• 欢迎访问开心洋葱网站,在线教程,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站,欢迎加入开心洋葱 QQ群
  • 为方便开心洋葱网用户,开心洋葱官网已经开启复制功能!
  • 欢迎访问开心洋葱网站,手机也能访问哦~欢迎加入开心洋葱多维思维学习平台 QQ群
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏开心洋葱吧~~~~~~~~~~~~~!
  • 由于近期流量激增,小站的ECS没能经的起亲们的访问,本站依然没有盈利,如果各位看如果觉着文字不错,还请看官给小站打个赏~~~~~~~~~~~~~!

【SLAM】VINS-MONO解析——后端优化(代码部分)

人工智能 iwande 2501次浏览 0个评论

7.2 代码

在estimator.cpp的processImage()的最后,代码如下:  

    else//solver_flag = NON_LINEAR,进行非线性优化
    {
        solveOdometry();  //<--1
        //边界判断:检测系统运行是否失败,若失败则重置估计器
        if (failureDetection()) //<--2
        {
            ROS_WARN("failure detection!");
            failure_occur = 1;
            clearState();
            setParameter();
            return;
        }

        slideWindow();//执行窗口滑动函数slideWindow();//<--3
        f_manager.removeFailures();//去除估计失败的点并发布关键点位置//<--4
        // prepare output of VINS
        key_poses.clear();//<--5
        for (int i = 0; i <= WINDOW_SIZE; i++)
            key_poses.push_back(Ps[i]);

        last_R = Rs[WINDOW_SIZE]; //<--6
        last_P = Ps[WINDOW_SIZE];
        last_R0 = Rs[0];
        last_P0 = Ps[0];
    }
}


  在主流程中,可以发现干了6件事,其中1,3是最关键的2个步骤。而optimization()恰好在solveOdometry()里,所以可以发现,代码是先优化,后marg。 7.2.1 solveOdometry()和optimization() (核心!)  

void Estimator::solveOdometry()
{
    if (frame_count < WINDOW_SIZE)
        return;
    if (solver_flag == NON_LINEAR)
    {
        f_manager.triangulate(Ps, tic, ric);//获得最新特征的深度//<--1
        optimization();//<--2
    }
}

    这块也干了2件事,第一件事就是根据当前的位姿三角化特征点,这个在初始化的时候也出现过一次,见6.4.3.。 主要看这个optimization()函数。 第一部分: (1)非线性优化 a. 声明和引入鲁棒核函数  

ceres::Problem problem;
ceres::LossFunction *loss_function;//1.引入鲁棒核函数
loss_function = new ceres::CauchyLoss(1.0);

    b. 添加各种待优化量X——位姿优化量  

  for (int i = 0; i < WINDOW_SIZE + 1; i++)//还包括最新的第11帧
    {
        ceres::LocalParameterization *local_parameterization = new PoseLocalParameterization();
        problem.AddParameterBlock(para_Pose[i], 7, local_parameterization);
        problem.AddParameterBlock(para_SpeedBias[i], 9);

    他把11帧的位姿都加上了。 这块出现了新数据结构para_Pose[i]和para_SpeedBias[i],这是因为ceres传入的都是double类型的,在vector2double()里初始化的。 c. 添加各种待优化量X——相机外参  

for (int i = 0; i < NUM_OF_CAM; i++)//2.3.  7维、相机IMU外参
{
    ceres::LocalParameterization *local_parameterization = new PoseLocalParameterization();
    problem.AddParameterBlock(para_Ex_Pose[i], 6, local_parameterization);
    if (!ESTIMATE_EXTRINSIC)//如果IMU-相机外参不需要标定
        problem.SetParameterBlockConstant(para_Ex_Pose[i]);//这个变量固定为constant
}

    d. 添加各种待优化量X——IMU-image时间同步误差  

if (ESTIMATE_TD)//2.4.  1维,标定同步时间
{
    problem.AddParameterBlock(para_Td[0], 1);
}

    待优化量的添加为什么没有视觉部分的待优化量(逆深度)? e. vector2double() 给ParameterBlock赋值。 f. 添加各种残差——先验信残差  

if (last_marginalization_info) 
{
    MarginalizationFactor *marginalization_factor = new MarginalizationFactor(last_marginalization_info);
    problem.AddResidualBlock(marginalization_factor, NULL,last_marginalization_parameter_blocks);
 }

    这块出现了2个新的数据结构。在第一次执行这段代码的时候,没有先验信息,所以这段肯定是跳过的。当第二次执行的时候就有了。last_marginalization_info的赋值出现在后面的代码里。 数据结构: last_marginalization_info 这个数据结构定义在marginalization_factor.cpp里面,比较复杂。  

class MarginalizationInfo
{
  public:
    ~MarginalizationInfo();
    int localSize(int size) const;
    int globalSize(int size) const;
    void addResidualBlockInfo(ResidualBlockInfo *residual_block_info);//添加参差块相关信息(优化变量,待marg的变量)
    void preMarginalize();//计算每个残差对应的雅克比,并更新parameter_block_data
    void marginalize();
    std::vector<double *> getParameterBlocks(std::unordered_map<long, double *> &addr_shift);

    std::vector<ResidualBlockInfo *> factors;//所有观测项
    int m, n;//m为要边缘化的变量个数,n为要保留下来的变量个数 m表示需marg变量/parameter_block_idx的总localSize n表示需保留变量的总localSize
    std::unordered_map<long, int> parameter_block_size; //global size//<优化变量内存地址,localSize>//为每个优化变量块的变量的大小,以IMU为例,是[7,9,7,9]
    int sum_block_size;
    std::unordered_map<long, int> parameter_block_idx; //local size //<优化变量内存地址,在矩阵中的id>//被merge掉的变量
    std::unordered_map<long, double *> parameter_block_data;//<优化变量内存地址,数据>//每个优化块数据
    //他们的key都同一是long类型的内存地址,而value分别是,各个优化变量的长度,各个优化变量在id以各个优化变量对应的double指针类型的数据。
    std::vector<int> keep_block_size; //global size
    std::vector<int> keep_block_idx;  //local size
    std::vector<double *> keep_block_data;
    //他们是进行边缘化之后保留下来的各个优化变量的长度,各个优化变量在id以各个优化变量对应的double指针类型的数据
    Eigen::MatrixXd linearized_jacobians;//分别指的是边缘化之后从信息矩阵恢复出来雅克比矩阵和残差向量
    Eigen::VectorXd linearized_residuals;
    const double eps = 1e-8;
};                                                                                                                

    另一个数据结构就是last_marginalization_parameter_blocks。它指的是先验矩阵对应的状态量X。  

数据结构: last_marginalization_parameter_blocks
    vector<double *> last_marginalization_parameter_blocks;//被边缘化留下的先验信息
它的赋值是在,vector<double *> parameter_blocks = marginalization_info->getParameterBlocks(addr_shift);

  g. 添加各种残差——IMU残差  

for (int i = 0; i < WINDOW_SIZE; i++)
{
    int j = i + 1;
    if (pre_integrations[j]->sum_dt > 10.0)
        continue;
    IMUFactor* imu_factor = new IMUFactor(pre_integrations[j]);
    problem.AddResidualBlock(imu_factor, NULL, para_Pose[i], para_SpeedBias[i], para_Pose[j], para_SpeedBias[j]);

    h. 添加各种残差——重投影残差 这里需要再次注意一点,IMU的残差是相邻两帧,但是视觉不是的,见7.1.2-(2)。 分析一下代码,它加入的2帧,这两帧是观测到同一特征的最近两帧。  

int f_m_cnt = 0;//统计有多少个特征用于非线性优化
int feature_index = -1;
for (auto &it_per_id : f_manager.feature)
{//遍历每一个特征
    it_per_id.used_num = it_per_id.feature_per_frame.size();
    if (!(it_per_id.used_num >= 2 && it_per_id.start_frame < WINDOW_SIZE - 2))
        continue;//必须满足出现2次以上且在倒数第二帧之前出现过
 
    ++feature_index;//统计有效特征数量          
    //!得到观测到该特征点的首帧
    int imu_i = it_per_id.start_frame, imu_j = imu_i - 1;
    //!得到首帧观测到的特征点的归一化相机坐标
    Vector3d pts_i = it_per_id.feature_per_frame[0].point;

    for (auto &it_per_frame : it_per_id.feature_per_frame)
    {//遍历当前特征在每一帧的信息 
        imu_j++;
        if (imu_i == imu_j)         
            continue;
        Vector3d pts_j = it_per_frame.point;//!得到第二个特征点
        if (ESTIMATE_TD)//在有同步误差的情况下
        {
                ProjectionTdFactor *f_td = new ProjectionTdFactor(pts_i, pts_j, it_per_id.feature_per_frame[0].velocity, it_per_frame.velocity,it_per_id.feature_per_frame[0].cur_td, it_per_frame.cur_td, t_per_id.feature_per_frame[0].uv.y(), it_per_frame.uv.y());

                problem.AddResidualBlock(f_td, loss_function, para_Pose[imu_i], para_Pose[imu_j], para_Ex_Pose[0], para_Feature[feature_index], para_Td[0]);
        }
        else//在没有同步误差的情况下
        {
            ProjectionFactor *f = new ProjectionFactor(pts_i, pts_j);
            problem.AddResidualBlock(f, loss_function, para_Pose[imu_i], para_Pose[imu_j], para_Ex_Pose[0], para_Feature[feature_index]);
        }
        f_m_cnt++;
    }
}

    h. 添加各种残差——回环检测 i.求解  

ceres::Solver::Options options;
options.linear_solver_type = ceres::DENSE_SCHUR;
options.trust_region_strategy_type = ceres::DOGLEG;
options.max_num_iterations = NUM_ITERATIONS;
if (marginalization_flag == MARGIN_OLD)
    options.max_solver_time_in_seconds = SOLVER_TIME * 4.0 / 5.0;
else
    options.max_solver_time_in_seconds = SOLVER_TIME;
ceres::Solver::Summary summary;
ceres::Solve(options, &problem, &summary);

    j. double2vector() 这个地方有2个值需要注意,就是:  

Vector3d origin_R0 = Utility::R2ypr(Rs[0]);
Vector3d origin_P0 = Ps[0];

    这块固定了先验信息。 至此,第一部分完结。我目前没有想通为什么路标点逆深度没有加入优化。 (2)边缘化 第二部分,边缘化。这一部分,只边缘化,不求解,求解留给下一轮优化的第一部分来进行。这部分是非常难懂的地方了。 k.marg_old 1)首先,把上一轮残存的信息加进来: 很明显,我现在要marg了,要构造新的先验H矩阵,那么要把之前的老先验的遗留信息加进来。  

if (marginalization_flag == MARGIN_OLD)
{
    MarginalizationInfo *marginalization_info = new MarginalizationInfo();
    vector2double();
    //! 先验误差会一直保存,而不是只使用一次
    //! 如果上一次边缘化的信息存在
    //! 要边缘化的参数块是 para_Pose[0] para_SpeedBias[0] 以及 para_Feature[feature_index](滑窗内的第feature_index个点的逆深度)
    if (last_marginalization_info)
    {
        vector<int> drop_set;
        for (int i = 0; i < static_cast<int>(last_marginalization_parameter_blocks.size()); i++)
        {//查询last_marginalization_parameter_blocks中是首帧状态量的序号
            if (last_marginalization_parameter_blocks[i] == para_Pose[0] ||
                last_marginalization_parameter_blocks[i] == para_SpeedBias[0])
                drop_set.push_back(i);
        }
        // construct new marginlization_factor构造边缘化的的Factor
        MarginalizationFactor *marginalization_factor = new MarginalizationFactor(last_marginalization_info);
        ResidualBlockInfo *residual_block_info = new ResidualBlockInfo(marginalization_factor, NULL, last_marginalization_parameter_blocks, drop_set);//添加上一次边缘化的参数块
        marginalization_info->addResidualBlockInfo(residual_block_info);
    }

    这一段代码用drop_set把最老帧的先验信息干掉了。 2)然后,把这次要marg的IMU信息加进来:  

if (pre_integrations[1]->sum_dt < 10.0)
{
    IMUFactor* imu_factor = new IMUFactor(pre_integrations[1]);

    ResidualBlockInfo *residual_block_info = new ResidualBlockInfo(imu_factor, NULL,vector<double *>{para_Pose[0], para_SpeedBias[0], para_Pose[1], para_SpeedBias[1]}, vector<int>{0, 1});

    marginalization_info->addResidualBlockInfo(residual_block_info);
}

    很明显,被marg掉的是第0帧信息。 3)然后,把这次要marg的视觉信息加进来:  

{//添加视觉的先验,只添加起始帧是旧帧且观测次数大于2的Features
    int feature_index = -1;
    for (auto &it_per_id : f_manager.feature)//遍历滑窗内所有的Features
    {
        it_per_id.used_num = it_per_id.feature_per_frame.size();//该特征点被观测到的次数
        if (!(it_per_id.used_num >= 2 && it_per_id.start_frame < WINDOW_SIZE - 2))
            continue;//Feature的观测次数不小于2次,且起始帧不属于最后两帧

        ++feature_index;

        int imu_i = it_per_id.start_frame, imu_j = imu_i - 1;
        if (imu_i != 0)//只选择被边缘化的帧的Features
            continue;
        //得到该Feature在起始下的归一化坐标
        Vector3d pts_i = it_per_id.feature_per_frame[0].point;

        for (auto &it_per_frame : it_per_id.feature_per_frame)
        {
            imu_j++;
            if (imu_i == imu_j)//不需要起始观测帧
                continue;

            Vector3d pts_j = it_per_frame.point;
            if (ESTIMATE_TD)
            {
                ProjectionTdFactor *f_td = new ProjectionTdFactor(pts_i, pts_j, it_per_id.feature_per_frame[0].velocity, it_per_frame.velocity,it_per_id.feature_per_frame[0].cur_td, it_per_frame.cur_td, it_per_id.feature_per_frame[0].uv.y(), it_per_frame.uv.y());

                ResidualBlockInfo *residual_block_info = new ResidualBlockInfo(f_td, loss_function, vector<double *>{para_Pose[imu_i], para_Pose[imu_j], para_Ex_Pose[0], para_Feature[feature_index], para_Td[0]}, vector<int>{0, 3});

                marginalization_info->addResidualBlockInfo(residual_block_info);
            }
            else
            {
                ProjectionFactor *f = new ProjectionFactor(pts_i, pts_j);

                ResidualBlockInfo *residual_block_info = new ResidualBlockInfo(f, loss_function, vector<double *>{para_Pose[imu_i], para_Pose[imu_j], para_Ex_Pose[0], para_Feature[feature_index]}, vector<int>{0, 3});

                marginalization_info->addResidualBlockInfo(residual_block_info);
            }
        }
    }
}

  vins把第0帧看到的特征点全都扔了。 4) 将三个ResidualBlockInfo中的参数块综合到marginalization_info中 其中,计算所有ResidualBlock(残差项)的残差和雅克比,parameter_block_data是参数块的容器。  

        marginalization_info->preMarginalize();//<--1

        marginalization_info->marginalize();//<--2
       
        std::unordered_map<long, double *> addr_shift; //<--3
        for (int i = 1; i <= WINDOW_SIZE; i++)
        {
            addr_shift[reinterpret_cast<long>(para_Pose[i])] = para_Pose[i - 1];
            addr_shift[reinterpret_cast<long>(para_SpeedBias[i])] = para_SpeedBias[i - 1];
        }
        for (int i = 0; i < NUM_OF_CAM; i++)//<--4
            addr_shift[reinterpret_cast<long>(para_Ex_Pose[i])] = para_Ex_Pose[i];
        if (ESTIMATE_TD) //<--5
        {
            addr_shift[reinterpret_cast<long>(para_Td[0])] = para_Td[0];
        }
        vector<double*> parameter_blocks = marginalization_info->getParameterBlocks(addr_shift);
//<--6
        if (last_marginalization_info) //<--7
            delete last_marginalization_info;
        last_marginalization_info = marginalization_info; //<--8
        last_marginalization_parameter_blocks = parameter_blocks;       
    }

    至此,marg_old结束。 l.marg_new 如果第二最新帧不是关键帧的话,则把这帧的视觉测量舍弃掉(边缘化)而保留IMU测量值在滑动窗口中。(其他步骤和上一步骤相同) else//如果第二最新帧不是关键帧的话,则把这帧的视觉测量舍弃掉(边缘化)而保留IMU测量值在滑动窗口中。(其他步骤和上一步骤相同  

{
    if (last_marginalization_info &&
        std::count(std::begin(last_marginalization_parameter_blocks), std::end(last_marginalization_parameter_blocks), para_Pose[WINDOW_SIZE - 1]))
    {

        MarginalizationInfo *marginalization_info = new MarginalizationInfo();
        vector2double();
        if (last_marginalization_info)
        {
            vector<int> drop_set;
            for (int i = 0; i < static_cast<int>(last_marginalization_parameter_blocks.size()); i++)
            {
                if (last_marginalization_parameter_blocks[i] == para_Pose[WINDOW_SIZE - 1])
                    drop_set.push_back(i);
            }
            // construct new marginlization_factor
            MarginalizationFactor *marginalization_factor = new MarginalizationFactor(last_marginalization_info);

            ResidualBlockInfo *residual_block_info = new ResidualBlockInfo(marginalization_factor, NULL, last_marginalization_parameter_blocks, drop_set);

            marginalization_info->addResidualBlockInfo(residual_block_info);
        }

        marginalization_info->preMarginalize();
        marginalization_info->marginalize();
        
        std::unordered_map<long, double *> addr_shift;
        for (int i = 0; i <= WINDOW_SIZE; i++)
        {
            if (i == WINDOW_SIZE - 1)
                continue;
            else if (i == WINDOW_SIZE)
            {
                addr_shift[reinterpret_cast<long>(para_Pose[i])] = para_Pose[i - 1];
                addr_shift[reinterpret_cast<long>(para_SpeedBias[i])] = para_SpeedBias[i - 1];
            }
            else
            {
                addr_shift[reinterpret_cast<long>(para_Pose[i])] = para_Pose[i];
                addr_shift[reinterpret_cast<long>(para_SpeedBias[i])] = para_SpeedBias[i];
            }
        }
        for (int i = 0; i < NUM_OF_CAM; i++)
            addr_shift[reinterpret_cast<long>(para_Ex_Pose[i])] = para_Ex_Pose[i];
        if (ESTIMATE_TD)
        {
            addr_shift[reinterpret_cast<long>(para_Td[0])] = para_Td[0];
        }
        
        vector<double *> parameter_blocks = marginalization_info->getParameterBlocks(addr_shift);
        if (last_marginalization_info)
            delete last_marginalization_info;
        last_marginalization_info = marginalization_info;
        last_marginalization_parameter_blocks = parameter_blocks;           
    }
}

  至此,optimization()结束。 7.2.2 failureDetection()  

bool Estimator::failureDetection()
{
    if (f_manager.last_track_num < 2)
        //return true;

    if (Bas[WINDOW_SIZE].norm() > 2.5)
        return true;
    
    if (Bgs[WINDOW_SIZE].norm() > 1.0)
        return true;
    
    Vector3d tmp_P = Ps[WINDOW_SIZE];
    if ((tmp_P - last_P).norm() > 5)
        return true;
    
    if (abs(tmp_P.z() - last_P.z()) > 1)
        return true; 
    
    Matrix3d tmp_R = Rs[WINDOW_SIZE];
    Matrix3d delta_R = tmp_R.transpose() * last_R;
    Quaterniond delta_Q(delta_R);
    double delta_angle;
    delta_angle = acos(delta_Q.w()) * 2.0 / 3.14 * 180.0;
    if (delta_angle > 50)
        //return true;

    return false;
}

    7.2.3 slideWindow() 见8.2. 7.2.4 f_manager.removeFailures()  

void FeatureManager::removeFailures()
{
    for (auto it = feature.begin(), it_next = feature.begin();
         it != feature.end(); it = it_next)
    {
        it_next++;
        if (it->solve_flag == 2)
            feature.erase(it);
    }
}

 


开心洋葱 , 版权所有丨如未注明 , 均为原创丨未经授权请勿修改 , 转载请注明【SLAM】VINS-MONO解析——后端优化(代码部分)
喜欢 (0)

您必须 登录 才能发表评论!

加载中……