• 欢迎访问开心洋葱网站,在线教程,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站,欢迎加入开心洋葱 QQ群
  • 为方便开心洋葱网用户,开心洋葱官网已经开启复制功能!
  • 欢迎访问开心洋葱网站,手机也能访问哦~欢迎加入开心洋葱多维思维学习平台 QQ群
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏开心洋葱吧~~~~~~~~~~~~~!
  • 由于近期流量激增,小站的ECS没能经的起亲们的访问,本站依然没有盈利,如果各位看如果觉着文字不错,还请看官给小站打个赏~~~~~~~~~~~~~!

【强化学习】揭开PPO2算法的神秘面纱(二)

人工智能 我是。 1483次浏览 0个评论

文章目录

 

  • 一、PPO主体
    • 1、主结构
    • 2、初始化部分
    • 3、训练部分
  • 二、环境交互
    • 1、 交互部分主结构
    • 2、初始化部分
    • 3、调用
    • 4、计算adv
    • 5、检验函数
  • 三、 run_ppo

 

一、PPO主体

 

1、主结构

  PPO主体主要分为两个部分,初始化部分init用来设定网络的一些超参数,以及构建网络,第二部分train则用于更新网络参数(实际代码中,该PPO主体继承自另外一个主要用于设定超参数的类)。  

class PPO():
	def __init__(...):
		pass
		
	def train(self, states, actions, advantages, logp_olds, returns):
        pass

 

2、初始化部分

  根据动作类型选取合适的网络模型,关于不同网络模型的代码实现参考上一篇文章  

  def __init__(
            self,
            state_shape,
            action_dim,
            is_discrete,
            max_action=1.,
            actor_units=[256, 256],
            critic_units=[256, 256],
            lr_actor=1e-3,
            lr_critic=3e-3,
            const_std=0.3,
            hidden_activation_actor="relu",
            hidden_activation_critic="relu",
            clip_ratio=0.2,
            name="PPO",
            **kwargs):
        super().__init__(name=name, **kwargs)
        self.clip_ratio = clip_ratio
        self._is_discrete = is_discrete
        
		# 创建网络模型
        if is_discrete:
            self.actor = CategoricalActor(
                state_shape, action_dim, actor_units)
        else:
            self.actor = GaussianActor(
                state_shape, action_dim, max_action, actor_units,
                hidden_activation=hidden_activation_actor,
                const_std=const_std)

        self.critic = CriticV(state_shape, critic_units,
                              hidden_activation=hidden_activation_critic)
		# 创建优化器
        self.actor_optimizer = tf.keras.optimizers.Adam(
            learning_rate=lr_actor)
        self.critic_optimizer = tf.keras.optimizers.Adam(
            learning_rate=lr_critic)

        # This is used to check if input state to `get_action` is multiple (batch) or single
        self._state_ndim = np.array(state_shape).shape[0]

 

3、训练部分

  a、训练actor   因为这里actor跟critic分开两个网络进行,不共享网络参数,因此将value_loss独立开单独进行梯度计算,因此损失函数用以下公式表示(c2取0.01):  
【强化学习】揭开PPO2算法的神秘面纱(二)   代码如下:  

  @tf.function
    def _train_actor_body(self, states, actions, advantages, logp_olds):
        with tf.device(self.device):
            # Update actor
            with tf.GradientTape() as tape:
            	# 计算熵
                ent = tf.reduce_mean(
                    self.actor.compute_entropy(states))
                if self.clip:
                	# 计算新策略的概率
                    logp_news = self.actor.compute_log_probs(
                        states, actions)
                    # 计算概率比例
                    ratio = tf.math.exp(logp_news - tf.squeeze(logp_olds))
                    # 对比例进行裁剪
                    min_adv = tf.clip_by_value(
                        ratio,
                        1.0 - self.clip_ratio,
                        1.0 + self.clip_ratio) * tf.squeeze(advantages)
                    # loss = (l_clip + entropy)
                    actor_loss = -tf.reduce_mean(tf.minimum(
                        ratio * tf.squeeze(advantages),
                        min_adv))
                    actor_loss -= self.entropy_coef * ent
                else:
                    raise NotImplementedError
            actor_grad = tape.gradient(
                actor_loss, self.actor.trainable_variables)
            self.actor_optimizer.apply_gradients(
                zip(actor_grad, self.actor.trainable_variables))

        return actor_loss, logp_news, ratio, ent

  熵值的计算:  

  def compute_entropy(self, state):
    	param = self._compute_dist(states)
        log_stds = param["log_std"]
        return tf.reduce_sum(log_stds + tf.math.log(tf.math.sqrt(2 * np.pi * np.e)), axis=-1)

  b、训练critic  
【强化学习】揭开PPO2算法的神秘面纱(二)   其中T指的是该序列τ 的长度,代码如下:  

    @tf.function
    def _train_critic_body(self, states, returns):
        with tf.device(self.device):
            # Train baseline
            with tf.GradientTape() as tape:
                current_V = self.critic(states)
                td_errors = tf.squeeze(returns) - current_V
                critic_loss = tf.reduce_mean(0.5 * tf.square(td_errors))
            critic_grad = tape.gradient(
                critic_loss, self.critic.trainable_variables)
            self.critic_optimizer.apply_gradients(
                zip(critic_grad, self.critic.trainable_variables))

        return critic_loss

 

二、环境交互

 

1、 交互部分主结构

 

class OnPolicyTrainer(object):
	def __init__(self,...):
		'''
		初始化训练参数,导入环境,policy等
		'''
		pass

	 def __call__(self):
	 	'''
		主循环,采集数据,更新网络
		'''
	 	pass

	def finish_horizon(self, last_val=0):
		'''
		每一个序列T采集完的时候调用
		用于计算adv,存储buffer
		'''
		pass

	def evaluate_policy(self, total_steps):
		'''
		用于检验决策模型得分
		'''
		pass

	def _set_from_args(self, args):
		'''
		设置参数
		'''
		pass
	
	@staticmethod
    def get_argument(parser=None):
    	'''
		获取参数
		'''
    	pass

 

2、初始化部分

 

  def __init__(self, policy,
                 env,
                 args,
                 test_env=None):
        self._set_from_args(args)
        self._policy = policy
        self._env = env
        self._test_env = self._env if test_env is None else test_env
		
		# 正则化状态
		# obs-mean/(var+ 1e8)
        if self._normalize_obs:
            self._env = NormalizeObsEnv(self._env)
            self._test_env = NormalizeObsEnv(self._test_env)
		
		...
		# 省略部分用于监测数据的代码
		...

 

3、调用

  ppo2算法里面,规定序列T 长度,即每一轮的最大步数,当步数达到最大值或者该轮结束时,通过以下式子进行网络更新,其中k[0T1]  
【强化学习】揭开PPO2算法的神秘面纱(二)   buffer的存储调用利用cpprb库提供的api实现。回调函数如下  


    def __call__(self):

		# 准备每一轮更新用的buffer
        # Prepare buffer
        self.replay_buffer = get_replay_buffer(
            self._policy, self._env)
        kwargs_local_buf = get_default_rb_dict(
            size=self._policy.horizon, env=self._env)
        kwargs_local_buf["env_dict"]["logp"] = {}
        kwargs_local_buf["env_dict"]["val"] = {}
        if is_discrete(self._env.action_space):
            kwargs_local_buf["env_dict"]["act"]["dtype"] = np.int32
        self.local_buffer = ReplayBuffer(**kwargs_local_buf)

        episode_steps = 0
        episode_return = 0
        episode_start_time = time.time()
        total_steps = np.array(0, dtype=np.int32)
        n_epoisode = 0
        obs = self._env.reset()

        tf.summary.experimental.set_step(total_steps)
        while total_steps < self._max_steps:
            # Collect samples
            for _ in range(self._policy.horizon):
                act, logp, val = self._policy.get_action_and_val(obs)
                next_obs, reward, done, _ = self._env.step(act)

                episode_steps += 1
                total_steps += 1
                episode_return += reward

                done_flag = done
                if hasattr(self._env, "_max_episode_steps") and \
                        episode_steps == self._env._max_episode_steps:
                    done_flag = False
                self.local_buffer.add(
                    obs=obs, act=act, next_obs=next_obs,
                    rew=reward, done=done_flag, logp=logp, val=val)
                obs = next_obs
				

                if done or episode_steps == self._episode_max_steps:
                    tf.summary.experimental.set_step(total_steps)
                    self.finish_horizon()
                    obs = self._env.reset()
                    n_epoisode += 1
                    fps = episode_steps / (time.time() - episode_start_time)
                    self.logger.info(
                        "Total Epi: {0: 5} Steps: {1: 7} Episode Steps: {2: 5} Return: {3: 5.4f} FPS: {4:5.2f}".format(
                            n_epoisode, int(total_steps), episode_steps, episode_return, fps))
                   
                    episode_steps = 0
                    episode_return = 0
                    episode_start_time = time.time()

            self.finish_horizon(last_val=val)

            tf.summary.experimental.set_step(total_steps)

            # 更新参数
            if self._policy.normalize_adv:
                samples = self.replay_buffer._encode_sample(np.arange(self._policy.horizon))
                mean_adv = np.mean(samples["adv"])
                std_adv = np.std(samples["adv"])
            with tf.summary.record_if(total_steps % self._save_summary_interval == 0):
                for _ in range(self._policy.n_epoch):
                    samples = self.replay_buffer._encode_sample(
                        np.random.permutation(self._policy.horizon))
                    if self._policy.normalize_adv:
                        adv = (samples["adv"] - mean_adv) / (std_adv + 1e-8)
                    else:
                        adv = samples["adv"]
                    for idx in range(int(self._policy.horizon / self._policy.batch_size)):
                        target = slice(idx * self._policy.batch_size,
                                       (idx + 1) * self._policy.batch_size)
                        self._policy.train(
                            states=samples["obs"][target],
                            actions=samples["act"][target],
                            advantages=adv[target],
                            logp_olds=samples["logp"][target],
                            returns=samples["ret"][target])

   

 

4、计算adv

  在ppo2里面,优势值通过以下方式计算:  
【强化学习】揭开PPO2算法的神秘面纱(二)  

  def finish_horizon(self, last_val=0):
        samples = self.local_buffer._encode_sample(
            np.arange(self.local_buffer.get_stored_size()))
        rews = np.append(samples["rew"], last_val)
        vals = np.append(samples["val"], last_val)

        # GAE-Lambda advantage calculation
        deltas = rews[:-1] + self._policy.discount * vals[1:] - vals[:-1]
        if self._policy.enable_gae:
            advs = discount_cumsum(
                deltas, self._policy.discount * self._policy.lam)
        else:
            advs = deltas

        # Rewards-to-go, to be targets for the value function
        rets = discount_cumsum(rews, self._policy.discount)[:-1]
        self.replay_buffer.add(
            obs=samples["obs"], act=samples["act"], done=samples["done"],
            ret=rets, adv=advs, logp=np.squeeze(samples["logp"]))
        self.local_buffer.clear()

  其中,discount_cumsum函数用以下方式实现  

def discount_cumsum(x, discount):
    """
    Forked from rllab for computing discounted cumulative sums of vectors.

    :param x (np.ndarray or tf.Tensor)
        vector of [x0, x1, x2]
    :return output:
        [x0 + discount * x1 + discount^2 * x2,
         x1 + discount * x2,
         x2]
    """
    return lfilter(
        b=[1],
        a=[1, float(-discount)],
        x=x[::-1],
        axis=0)[::-1]

 

5、检验函数

 

  def evaluate_policy(self, total_steps):
        if self._normalize_obs:
            self._test_env.normalizer.set_params(
                *self._env.normalizer.get_params())
        avg_test_return = 0.
        if self._save_test_path:
            replay_buffer = get_replay_buffer(
                self._policy, self._test_env, size=self._episode_max_steps)
        for i in range(self._test_episodes):
            episode_return = 0.
            frames = []
            obs = self._test_env.reset()
            for _ in range(self._episode_max_steps):
                act, _ = self._policy.get_action(obs, test=True)
                act = act if not hasattr(self._env.action_space, "high") else \
                    np.clip(act, self._env.action_space.low, self._env.action_space.high)
                next_obs, reward, done, _ = self._test_env.step(act)
                if self._save_test_path:
                    replay_buffer.add(
                        obs=obs, act=act, next_obs=next_obs,
                        rew=reward, done=done)
                        
                episode_return += reward
                obs = next_obs
                if done:
                    break
            prefix = "step_{0:08d}_epi_{1:02d}_return_{2:010.4f}".format(
                total_steps, i, episode_return)
            
        return avg_test_return / self._test_episodes

 

三、 run_ppo

  导入相关模块。utils主要涵盖了一些琐碎的功能,例如跟环境相关的。  

import tensorflow as tf

from ppo import PPO
from on_policy_trainer import OnPolicyTrainer
from utils import is_discrete, get_act_dim

  主程序,先从trainer那里获取默认的超参数,然后设定跟训练集测试集相关的参数。ppo算法的是随机连续决策算法,根据openAI官方推荐,其模型输出的方差不是一个函数并且与环境无关。  

官方说法: There is a single vector of log standard deviations,logσ, which is not a function of state: the log ⁡ σ are standalone parameters. (You Should Know: our implementations of VPG, TRPO, and PPO do it this way.)

 

if __name__ == '__main__':
    parser = OnPolicyTrainer.get_argument()
    parser = PPO.get_argument(parser)
    parser.add_argument('--env-name', type=str,
                        default="Pendulum-v0")
    parser.set_defaults(test_interval=20480)
    parser.set_defaults(max_steps=int(1e7))
    parser.set_defaults(horizon=2048)
    parser.set_defaults(batch_size=64)
    parser.set_defaults(gpu=-1)
    parser.set_defaults(episode_max_steps=200)
    args = parser.parse_args()

    env = gym.make(args.env_name)
    
    test_env = gym.make(args.env_name)

    policy = PPO(
        state_shape=env.observation_space.shape,
        action_dim=get_act_dim(env.action_space),
        is_discrete=is_discrete(env.action_space),
        max_action=None if is_discrete(
            env.action_space) else env.action_space.high[0],
        batch_size=args.batch_size,
        actor_units=[128, 64],
        critic_units=[128, 64],
        n_epoch=10,
        n_epoch_critic=10,
        lr_actor=3e-4,
        lr_critic=3e-4,
        discount=0.99,
        lam=0.95,
        hidden_activation=tf.nn.relu,
        horizon=args.horizon,
        normalize_adv=args.normalize_adv,
        enable_gae=args.enable_gae,
        gpu=args.gpu)
    trainer = OnPolicyTrainer(policy, env, args)
    trainer()

  最后来看下结果,大约在400k步的时候就开始收敛了,如果想收敛地更快可以自己尝试一下调整参数  
在这里插入图片描述

   


开心洋葱 , 版权所有丨如未注明 , 均为原创丨未经授权请勿修改 , 转载请注明【强化学习】揭开PPO2算法的神秘面纱(二)
喜欢 (0)

您必须 登录 才能发表评论!

加载中……