• 欢迎访问开心洋葱网站,在线教程,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站,欢迎加入开心洋葱 QQ群
  • 为方便开心洋葱网用户,开心洋葱官网已经开启复制功能!
  • 欢迎访问开心洋葱网站,手机也能访问哦~欢迎加入开心洋葱多维思维学习平台 QQ群
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏开心洋葱吧~~~~~~~~~~~~~!
  • 由于近期流量激增,小站的ECS没能经的起亲们的访问,本站依然没有盈利,如果各位看如果觉着文字不错,还请看官给小站打个赏~~~~~~~~~~~~~!

Tensorflow学习——结合ROS调用模型实现目标识别

人工智能 white_Learner 2350次浏览 0个评论

环境:Ubuntu16.04+Tensorflow-cpu-1.6.0+ROS Kinetic+OpenCV3.3.1

前期准备:

  • 完成Object Detection api配置
  • 完成OpenCV配置

完成模型训练后就是模型的应用,这里通过ROS利用Object Detection api调用模型实现目标物体的识别。

 

一、模型导入

模型路径设置如下图所示,注意设置目标对象类型数目。

 


#Get models

rospy.loginfo("begin initialization...")

self.PATH_TO_CKPT = '../frozen_inference_graph.pb'

self.PATH_TO_LABELS = '../bottel.pbtxt'

self.NUM_CLASSES = 2

self.detection_graph = self._load_model()

self.category_index = self._load_label_map()

self.image_tensor = self.detection_graph.get_tensor_by_name('image_tensor:0')

self.boxes = self.detection_graph.get_tensor_by_name('detection_boxes:0')

self.scores = self.detection_graph.get_tensor_by_name('detection_scores:0')

self.classes = self.detection_graph.get_tensor_by_name('detection_classes:0')

self.num_detections = self.detection_graph.get_tensor_by_name('num_detections:0')

 

二、数据处理

调用模型识别目标对象前需进行数据处理,流程如下图所示。

  • 相机获取的图像信息会以ROSImage Message的格式发布在ROS平台上,然后通过CvBridge对获取的图像信息进行转换,将其从ROSImage Message格式转变为Mat格式。
  • 通过OpenCV对获取图像数据进行预处理后转换为numpy数组,然后调用ObjectDetection API进行识别。
  • 完成图像中目标物体的识别后,识别结果以数组的形式发布到相关话题中,同时视觉识别程序会将识别出来的目标物体使用带有颜色的矩形框出来并在其上方标识识别物体的标签及其概率,然后在转换为ROSImage Message格式发布到相应话题中。

 

Tensorflow学习——结合ROS调用模型实现目标识别

 

代码实现

 


	# detect object from the image		

	def imgprogress(self, image_msg):

		with self.detection_graph.as_default():

			with tf.Session(graph=self.detection_graph) as sess:

				#translate image_msg data

				cv_image = self._cv_bridge.imgmsg_to_cv2(image_msg, "rgb8")

				pil_img = Image.fromarray(cv_image)

				(im_width, im_height) = pil_img.size

				image_np =np.array(pil_img.getdata()).reshape((im_height, im_width, 3)).astype(np.uint8)

				# Expand dimensions since the model expects images to have shape: [1, None, None, 3]

				image_np_expanded = np.expand_dims(image_np, axis=0)

 

				# Actual detection.

				(boxes, scores, classes, num_detections) = sess.run([self.boxes, self.scores, self.classes, self.num_detections],feed_dict={self.image_tensor: image_np_expanded})

				

				# Visualization of the results of a detection.

				vis_util.visualize_boxes_and_labels_on_image_array(image_np,np.squeeze(boxes),np.squeeze(classes).astype(np.int32),np.squeeze(scores),

				self.category_index,

    		    use_normalized_coordinates=True,

     		 	line_thickness=8)

				

				#public img_msg

				ROSImage_pro=self._cv_bridge.cv2_to_imgmsg(image_np,encoding="rgb8")

				self._pub.publish(ROSImage_pro)

 

三、触发识别

因通过Object Detection API进行物体识别需要占用大量资源,所以采用动态识别的会非常卡,这里采用触发器进行触发识别,本程序设置了一个订阅器self._sub用于获取用于识别的图片,当需要进行识别时,发布图片到image_topic即可触发程序,同时结果会通过self._pub发布到object_detection话题中。

 


# Subscribe to judge

self._sub = rospy.Subscriber(image_topic, ROSImage, self.imgprogress, queue_size=10)

		 

# Subscribe to the image

self._pub = rospy.Publisher('object_detection', ROSImage, queue_size=1)

 

完整程序

 


#!/usr/bin/env python

 

import rospy

from sensor_msgs.msg import Image as ROSImage

from cv_bridge import CvBridge

import cv2

import matplotlib

import numpy as np

import os

import six.moves.urllib as urllib

import sys

import tarfile

import tensorflow as tf

import zipfile

import uuid

from collections import defaultdict

from io import StringIO

from PIL import Image

from math import isnan

 

# This is needed since the notebook is stored in the object_detection folder.

from object_detection.utils import label_map_util

from object_detection.utils import visualization_utils as vis_util

 

class ObjectDetectionDemo():

	def __init__(self):

		rospy.init_node('tfobject')

 

	    # Set the shutdown function (stop the robot)

		rospy.on_shutdown(self.shutdown)

		camera_topic = "/camera/rgb/image_raw" #rospy.get_param("~image_topic", "")

		image_topic = "/image/rgb/object"

 

		self.vfc=0

		self._cv_bridge = CvBridge()

 

		#Get models

		rospy.loginfo("begin initialization...")

		self.PATH_TO_CKPT = '../frozen_inference_graph.pb'

		self.PATH_TO_LABELS = '../bottel.pbtxt'

		self.NUM_CLASSES = 2

		self.detection_graph = self._load_model()

		self.category_index = self._load_label_map()

		self.image_tensor = self.detection_graph.get_tensor_by_name('image_tensor:0')

		self.boxes = self.detection_graph.get_tensor_by_name('detection_boxes:0')

		self.scores = self.detection_graph.get_tensor_by_name('detection_scores:0')

		self.classes = self.detection_graph.get_tensor_by_name('detection_classes:0')

		self.num_detections = self.detection_graph.get_tensor_by_name('num_detections:0')

 

		# Subscribe to judge

		self._sub = rospy.Subscriber(image_topic, ROSImage, self.imgprogress, queue_size=10)

		 

		# Subscribe to the image

		self._pub = rospy.Publisher('object_detection', ROSImage, queue_size=1)

		rospy.loginfo("initialization has finished...")

	

	def _load_model(self):

		detection_graph = tf.Graph()

		with detection_graph.as_default():

			od_graph_def = tf.GraphDef()

			with tf.gfile.GFile(self.PATH_TO_CKPT, 'rb') as fid:

				serialized_graph = fid.read()

				od_graph_def.ParseFromString(serialized_graph)

				tf.import_graph_def(od_graph_def, name='')

		return detection_graph

	

	def _load_label_map(self):

		label_map = label_map_util.load_labelmap(self.PATH_TO_LABELS)

		categories = label_map_util.convert_label_map_to_categories(label_map,max_num_classes=self.NUM_CLASSES,use_display_name=True)

		category_index = label_map_util.create_category_index(categories)

		return category_index

	

	# detect object from the image		

	def imgprogress(self, image_msg):

		with self.detection_graph.as_default():

			with tf.Session(graph=self.detection_graph) as sess:

				#translate image_msg data

				cv_image = self._cv_bridge.imgmsg_to_cv2(image_msg, "rgb8")

				pil_img = Image.fromarray(cv_image)

				(im_width, im_height) = pil_img.size

				image_np =np.array(pil_img.getdata()).reshape((im_height, im_width, 3)).astype(np.uint8)

				# Expand dimensions since the model expects images to have shape: [1, None, None, 3]

				image_np_expanded = np.expand_dims(image_np, axis=0)

 

				# Actual detection.

				(boxes, scores, classes, num_detections) = sess.run([self.boxes, self.scores, self.classes, self.num_detections],feed_dict={self.image_tensor: image_np_expanded})

				

				# Visualization of the results of a detection.

				vis_util.visualize_boxes_and_labels_on_image_array(image_np,np.squeeze(boxes),np.squeeze(classes).astype(np.int32),np.squeeze(scores),

				self.category_index,

    		    use_normalized_coordinates=True,

     		 	line_thickness=8)

				

				#public img_msg

				ROSImage_pro=self._cv_bridge.cv2_to_imgmsg(image_np,encoding="rgb8")

				self._pub.publish(ROSImage_pro)

	

	# stop node

	def shutdown(self):

		rospy.loginfo("Stopping the tensorflow object detection...")

		rospy.sleep(1) 

	

if __name__ == '__main__':

    try:

        ObjectDetectionDemo()

        rospy.spin()

    except rospy.ROSInterruptException:

        rospy.loginfo("RosTensorFlow_ObjectDetectionDemo has started.")

 


开心洋葱 , 版权所有丨如未注明 , 均为原创丨未经授权请勿修改 , 转载请注明Tensorflow学习——结合ROS调用模型实现目标识别
喜欢 (0)

您必须 登录 才能发表评论!

加载中……