• 欢迎访问开心洋葱网站,在线教程,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站,欢迎加入开心洋葱 QQ群
  • 为方便开心洋葱网用户,开心洋葱官网已经开启复制功能!
  • 欢迎访问开心洋葱网站,手机也能访问哦~欢迎加入开心洋葱多维思维学习平台 QQ群
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏开心洋葱吧~~~~~~~~~~~~~!
  • 由于近期流量激增,小站的ECS没能经的起亲们的访问,本站依然没有盈利,如果各位看如果觉着文字不错,还请看官给小站打个赏~~~~~~~~~~~~~!

ROS整合谷歌tensorflow实现物体识别

人工智能 十啵 2352次浏览 0个评论

目前机器人行业最火的ROS,人工智能/机器学习方面相对较火的tensorflow,两者结合肯定是让机器人锦上添花,功能更加丰富完善。   正好在GitHub上看到了tensorflow的ROS功能包,验证功能包可行性之后,给大家分享一下。   先看一下效果: TensorFlow由谷歌人工智能团队谷歌大脑(Google Brain)开发和维护,效果非常好,不得不承认谷歌太强了。  
ROS整合谷歌tensorflow实现物体识别   而且可以看到,准确率还是非常高的。   版本要求:Ubuntu16.04+ROS Kinetic  

步骤:

  (1) 安装ROS kinetic kame   (2) 安装相机依赖  

sudo apt-get install ros-kinetic-usb_cam ros-kinetic-openni2-launch

  (3) 安装tensorflow 安装tensorflow坑很多,这里不再说,不同电脑情况不太一样   (4) clone功能包  

cd ~/catkin_ws/src

git clone https://github.com/Kukanani/vision_msgs.git

git clone https://github.com/osrf/tensorflow_object_detector.git

  然后编译   (5) 插上相机进行测试  

roslaunch tensorflow_object_detector usb_cam_detector.launch

 
ROS整合谷歌tensorflow实现物体识别   看一下最关键的源码,代码很短,主要是基于模型库的匹配,有兴趣可以深入阅读:  

#!/usr/bin/env python


import os
import sys
import cv2
import numpy as np
try:
    import tensorflow as tf
except ImportError:
    print("unable to import TensorFlow. Is it installed?")
    print("  sudo apt install python-pip")
    print("  sudo pip install tensorflow")
    sys.exit(1)

# ROS related imports
import rospy
from std_msgs.msg import String , Header
from sensor_msgs.msg import Image
from cv_bridge import CvBridge, CvBridgeError
from vision_msgs.msg import Detection2D, Detection2DArray, ObjectHypothesisWithPose

# Object detection module imports
import object_detection
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util

# SET FRACTION OF GPU YOU WANT TO USE HERE
GPU_FRACTION = 0.4

######### Set model here ############
MODEL_NAME =  'ssd_mobilenet_v1_coco_11_06_2017'
# By default models are stored in data/models/
MODEL_PATH = os.path.join(os.path.dirname(sys.path[0]),'data','models' , MODEL_NAME)
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = MODEL_PATH + '/frozen_inference_graph.pb'
######### Set the label map file here ###########
LABEL_NAME = 'mscoco_label_map.pbtxt'
# By default label maps are stored in data/labels/
PATH_TO_LABELS = os.path.join(os.path.dirname(sys.path[0]),'data','labels', LABEL_NAME)
######### Set the number of classes here #########
NUM_CLASSES = 90

detection_graph = tf.Graph()
with detection_graph.as_default():
    od_graph_def = tf.GraphDef()
    with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
        serialized_graph = fid.read()
        od_graph_def.ParseFromString(serialized_graph)
        tf.import_graph_def(od_graph_def, name='')

## Loading label map
# Label maps map indices to category names, so that when our convolution network predicts `5`,
# we know that this corresponds to `airplane`.  Here we use internal utility functions,
# but anything that returns a dictionary mapping integers to appropriate string labels would be fine
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)

# Setting the GPU options to use fraction of gpu that has been set
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = GPU_FRACTION

# Detection

class Detector:

    def __init__(self):
        self.image_pub = rospy.Publisher("debug_image",Image, queue_size=1)
        self.object_pub = rospy.Publisher("objects", Detection2DArray, queue_size=1)
        self.bridge = CvBridge()
        self.image_sub = rospy.Subscriber("image", Image, self.image_cb, queue_size=1, buff_size=2**24)
        self.sess = tf.Session(graph=detection_graph,config=config)

    def image_cb(self, data):
        objArray = Detection2DArray()
        try:
            cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8")
        except CvBridgeError as e:
            print(e)
        image=cv2.cvtColor(cv_image,cv2.COLOR_BGR2RGB)

        # the array based representation of the image will be used later in order to prepare the
        # result image with boxes and labels on it.
        image_np = np.asarray(image)
        # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
        image_np_expanded = np.expand_dims(image_np, axis=0)
        image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
        # Each box represents a part of the image where a particular object was detected.
        boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
        # Each score represent how level of confidence for each of the objects.
        # Score is shown on the result image, together with the class label.
        scores = detection_graph.get_tensor_by_name('detection_scores:0')
        classes = detection_graph.get_tensor_by_name('detection_classes:0')
        num_detections = detection_graph.get_tensor_by_name('num_detections:0')

        (boxes, scores, classes, num_detections) = self.sess.run([boxes, scores, classes, num_detections],
            feed_dict={image_tensor: image_np_expanded})

        objects=vis_util.visualize_boxes_and_labels_on_image_array(
            image,
            np.squeeze(boxes),
            np.squeeze(classes).astype(np.int32),
            np.squeeze(scores),
            category_index,
            use_normalized_coordinates=True,
            line_thickness=2)

        objArray.detections =[]
        objArray.header=data.header
        object_count=1

        for i in range(len(objects)):
            object_count+=1
            objArray.detections.append(self.object_predict(objects[i],data.header,image_np,cv_image))

        self.object_pub.publish(objArray)

        img=cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
        image_out = Image()
        try:
            image_out = self.bridge.cv2_to_imgmsg(img,"bgr8")
        except CvBridgeError as e:
            print(e)
        image_out.header = data.header
        self.image_pub.publish(image_out)

    def object_predict(self,object_data, header, image_np,image):
        image_height,image_width,channels = image.shape
        obj=Detection2D()
        obj_hypothesis= ObjectHypothesisWithPose()

        object_id=object_data[0]
        object_score=object_data[1]
        dimensions=object_data[2]

        obj.header=header
        obj_hypothesis.id = object_id
        obj_hypothesis.score = object_score
        obj.results.append(obj_hypothesis)
        obj.bbox.size_y = int((dimensions[2]-dimensions[0])*image_height)
        obj.bbox.size_x = int((dimensions[3]-dimensions[1] )*image_width)
        obj.bbox.center.x = int((dimensions[1] + dimensions [3])*image_height/2)
        obj.bbox.center.y = int((dimensions[0] + dimensions[2])*image_width/2)

        return obj

def main(args):
    rospy.init_node('detector_node')
    obj=Detector()
    try:
        rospy.spin()
    except KeyboardInterrupt:
        print("ShutDown")
    cv2.destroyAllWindows()

if __name__=='__main__':
    main(sys.argv)


开心洋葱 , 版权所有丨如未注明 , 均为原创丨未经授权请勿修改 , 转载请注明ROS整合谷歌tensorflow实现物体识别
喜欢 (0)

您必须 登录 才能发表评论!

加载中……