• 欢迎访问开心洋葱网站,在线教程,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站,欢迎加入开心洋葱 QQ群
  • 为方便开心洋葱网用户,开心洋葱官网已经开启复制功能!
  • 欢迎访问开心洋葱网站,手机也能访问哦~欢迎加入开心洋葱多维思维学习平台 QQ群
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏开心洋葱吧~~~~~~~~~~~~~!
  • 由于近期流量激增,小站的ECS没能经的起亲们的访问,本站依然没有盈利,如果各位看如果觉着文字不错,还请看官给小站打个赏~~~~~~~~~~~~~!

【深度学习实战】《深入浅出图神经网络》GCN实战(pytorch)

人工智能 喵木木 3039次浏览 0个评论

目录

 

    • 1. 前言
    • 2. 数据预处理——CoraData类的定义
    • 3. GCN层定义
    • 4. 模型构建
    • 5. 模型训练与测试

 

1. 前言

  这次的任务是节点分类。使用的是Cora数据集,该数据集由2708篇论文,及它们之间的引用关系构成的5429条边组成。这些论文根据主题被划分为7类,分别是神经网络、牵强化学习、规则学习、概率方法、遗传算法、理论研究、案例相关。每篇论文的特征是通过词袋模型得到的,维度为1433,每一维表示一个词,1表示该词在这篇文章中出现过,0表示未出现。   导入需要的包:  

import itertools
import os
import os.path as osp
import pickle
import urllib
from collections import namedtuple

import numpy as np
import scipy.sparse as sp
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
import torch.optim as optim
import matplotlib.pyplot as plt
%matplotlib inlin

 

2. 数据预处理——CoraData类的定义

  CoraData类用来对数据进行预处理,主要包括下载数据、规范化数据并进行缓存以备重复使用。  

###################################################################################
#                                  数据准备                                       #
###################################################################################

## 用于保存处理好的数据
Data = namedtuple('Data', ['x', 'y', 'adjacency', 'train_mask', 'val_mask','test_mask'])

class CoraData(object):
    download_url = "http://github.com/kimiyoung/planetoid/raw/master/data"
    filenames = ["ind.cora.{}".format(name) for name in ['x', 'tx', 'allx', 'y', 'ty', 'ally', 'graph','test.index']]
    
    ######### 数据准备部分——数据下载 ##################################
    def __init__(self, data_root = "cora", rebuild = False):
        """
        包括数据下载、处理、加载等功能
        当数据的缓存文件存在时,使用缓存文件,否则将下载、处理、并缓存到磁盘
        
        Args:
        -------
            data_root: string, optional
                存放数据的目录,原始数据路径:{data_root}/raw
                缓存存放路径:{data_root}/processed_cora.pkl
            rebuild: boolean, optional
                是否需要重新构建数据集,当设为True时,如果缓存数据存在也会重建数据
        """
        self.data_root = data_root
        save_file = osp.join(self.data_root, "processed_cora.pkl")
        if osp.exists(save_file) and not rebuild:
            print("Using Cached file:{}".format(save_file))
            self._data = pickle.load(open(save_file, "rb"))
        else:
            self.maybe_download()
            self._data = self.process_data()
            with open(save_file, "wb") as f:
                pickle.dump(self.data, f)
            print("Cached file: {}".format(save_file))
        
    @property
    def data(self):
        """
        返回Data数据对象,包括x,y,adjacency, train_mask, valid_mask, test_mask
        """
        return self._data
    
    def maybe_download(self):
        save_path = osp.join(self.data_root, "raw")
        for name in self.filenames:
            if not osp.exists(osp.join(save_path, name)):
                self.download_data("{}/{}".format(self.download_url, name), save_path)
    
    @staticmethod
    def download_data(url, save_path):
        """
        数据下载工具,当原始数据不存在时将会进行下载
        """
        if not osp.exists(save_path):
            os.makedirs(save_path)
        data = urllib.request.urlopen(url)
        filename = osp.basename(url)
        
        with open(osp.join(save_path, filename), 'wb') as f:
            f.write(data.read())
        return True
    
    ######### 下面是数据处理的部分 ##################################
    def process_data(self):
        """
        处理数据,得到节点特征和标签、邻接矩阵、训练集、验证集以及测试集
        """
        print("Process data ...")
        _, tx, allx, y, ty, ally, graph, test_index = [self.read_data(osp.join(self.data_root,"raw", name)) for name in self.filenames]       
        train_index = np.arange(y.shape[0]) #
        val_index = np.arange(y.shape[0], y.shape[0]+500)
        sorted_test_index = sorted(test_index)
        
        #将训练集和测试集结合得到总的数据集
        x = np.concatenate((allx, tx), axis = 0) 
        # 将训练集和测试集结合得到总的数据集,并且得到标签(ally和ty实质上是y的向量
        y = np.concatenate((ally, ty), axis = 0).argmax(axis = 1)
        
        x[test_index] = x[sorted_test_index]
        y[test_index] = y[sorted_test_index]
        num_nodes = x.shape[0]
        
        train_mask = np.zeros(num_nodes, dtype = np.bool)
        val_mask = np.zeros(num_nodes, dtype = np.bool)
        test_mask = np.zeros(num_nodes, dtype = np.bool)
        train_mask[train_index] = True
        val_mask[val_index] = True
        test_mask[test_index] = True
        adjacency = self.build_adjacency(graph)
        
        print("Node's feature shape: ", x.shape)
        print("Node's label shape: ", y.shape)
        print("Adjacency's shape: ", adjacency.shape)
        print("Number of training nodes: ", train_mask.sum())
        print("Number of validation nodes: ", val_mask.sum())
        print("Number of test nodes: ", test_mask.sum())
        
        return Data(x=x, y=y, adjacency= adjacency, train_mask=train_mask, val_mask=val_mask, test_mask=test_mask)
    
    @staticmethod
    def build_adjacency(adj_dict):
        """
        根据邻接列表创建邻接矩阵
        """
        edge_index = []
        num_nodes = len(adj_dict)
        for src,dst in adj_dict.items():
            edge_index.extend([src, v] for v in dst)
            edge_index.extend([v, src] for v in dst)
        # 由于上述得到的结果中存在重复的边,删掉这些重复的边
        edge_index = list(k for k, _ in itertools.groupby(sorted(edge_index)))
        edge_index = np.asarray(edge_index)
        adjacency = sp.coo_matrix((np.ones(len(edge_index)), (edge_index[:, 0], edge_index[:, 1])),shape=(num_nodes, num_nodes), dtype = "float32")
        
        return adjacency
    
    @staticmethod
    def read_data(path):
        """
        使用不同的方式读取原始数据以进一步处理
        """
        name = osp.basename(path)
        if name == "ind.cora.test.index":
            out = np.genfromtxt(path, dtype = "int64")
            return out
        else:
            out = pickle.load(open(path, 'rb'), encoding = "latin1")
            out = out.toarray() if hasattr(out, "toarray") else out
            return out

# 规范化邻接矩阵
def normalization(adjacency):
    """
    计算 L=D^-0.5 * (A+I) * D^-0.5
    """
    adjacency += sp.eye(adjacency.shape[0]) #增加自连接
    degree = np.array(adjacency.sum(1))
    d_hat = sp.diags(np.power(degree, -0.5).flatten())
    return d_hat.dot(adjacency).dot(d_hat).tocoo()

# 参数设置
device = "cuda" if torch.cuda.is_available() else "cpu"
        
# 加载数据,并转换为torch.Tensor
print('='*20)
print('加载数据')
dataset = CoraData().data
x = dataset.x / dataset.x.sum(1, keepdims = True) #归一化数据,使得每一行和为1
tensor_x = torch.from_numpy(x).to(device)
tensor_y = torch.from_numpy(dataset.y).to(device)
tensor_train_mask = torch.from_numpy(dataset.train_mask).to(device)
tensor_val_mask = torch.from_numpy(dataset.val_mask).to(device)
tensor_test_mask = torch.from_numpy(dataset.test_mask).to(device)
normalization_adjacency = normalization(dataset.adjacency) #规范化邻接矩阵
indices = torch.from_numpy(np.asarray([normalization_adjacency.row, normalization_adjacency.col]).astype('int64')).long()
values = torch.from_numpy(normalization_adjacency.data.astype(np.float32))
tensor_adjacency = torch.sparse.FloatTensor(indices, values, (2708, 2708)).to(device)

  Python namedtuple   namedtuple是python元组的升级版本——具名元组。类似于简化定义一个类及其属性。   在这里,数据集被预处理为包括以下几个部分的数据形式:  

  • x:节点特征,维度为2708×1433;
  • y:节点对应的标签,包括7个类别;
  • adjacency:邻接矩阵,维度为2708×2708,类型为scipy.sparse.coo_matrix
  • train_mask、val_mask、test_mask:与节点数相同的掩码,用于划分训练集、验证集、测试集。

  数据集:https://github.com/kimiyoung/planetoid   下载的数据集中:  

  • tx:测试实例的特征向量
  • ty:测试实例的标签的one-hot编码
  • test.index:the indices of test instances in graph, for the inductive setting
  • ally: allx中所有实例的标签
  • allx, the feature vectors of both labeled and unlabeled training instances (a superset of x)
  • graph, 一个字典,其格式是{index: [index_of_neighbor_nodes]}

 

3. GCN层定义

  根据GCN的定义X=σ(L~symXW)来定义GCN层。由于邻接矩阵是稀疏矩阵,为了提高运算效率,使用稀疏矩阵乘法。  

###################################################################################
#                                  GCN层定义                                      #
###################################################################################   

class GraphConvolution(nn.Module):
    def __init__(self, input_dim, output_dim, use_bias = True):
        """
        图卷积:L*X*\theta
        
        Args:
        -------
            input_dim: int 
                节点输入特征的维度
            output_dim: int
                输出特征维度
            use_bias: bool, optional
                是否使用偏置
        """
        
        super(GraphConvolution, self).__init__()
        self.input_dim = input_dim
        self.output_dim = output_dim
        self.use_bias = use_bias
        self.weight = nn.Parameter(torch.Tensor(input_dim, output_dim))
        if self.use_bias:
            self.bias = nn.Parameter(torch.Tensor(output_dim))
        else:
            self.register_parameter('bias', None)
        self.reset_parameters()
        
    def reset_parameters(self):
        init.kaiming_uniform_(self.weight)
        if self.use_bias:
            init.zeros_(self.bias)
    
    def forward(self, adjacency, input_feature):
        """
        邻接矩阵是系数矩阵,因此在计算时使用稀疏矩阵乘法
        
        Args:
        -------
            adjacency: torch.sparse.FloatTensor
                邻接矩阵
            input_feature: torch.Tensor
                输入特征
        """
        support = torch.mm(input_feature, self.weight)
        output = torch.sparse.mm(adjacency, support)
        if self.use_bias:
            output += self.bias
        return output

 

4. 模型构建

  有了数据和GCN层,就可以构建模型进行训练了。我们定义一个两层的GCN,其中输入维度为1433,隐藏层维度设置为16,最后一层GCN将输出维度变为类别7,激活函数使用ReLU。  

###################################################################################
#                                   模型构建                                      #
###################################################################################  

class GcnNet(nn.Module):
    """
    定义一个包含两层GraphConvolution的模型
    """
    def __init__(self, input_dim = 1433):
        super(GcnNet,self).__init__()
        self.gcn1 = GraphConvolution(input_dim, 16)
        self.gcn2 = GraphConvolution(16, 7)
    
    def forward(self, adjacency, feature):
        h = F.relu(self.gcn1(adjacency, feature))
        logits = self.gcn2(adjacency, h)
        return logits

#超参数定义
learning_rate = 0.1
weight_decay = 5e-4
epoches = 200

# 模型定义(模型实例化、损失函数定义、优化器定义)
model = GcnNet().to(device)
criterion = nn.CrossEntropyLoss().to(device)
optimizer = optim.Adam(model.parameters(), lr = learning_rate, weight_decay = weight_decay)

 

5. 模型训练与测试

 

###################################################################################
#                             模型训练与测试                                      #
###################################################################################

def train():
    loss_history = []
    val_acc_history = []
    train_acc_history = []
    
    model.train()
    train_y = tensor_y[tensor_train_mask]
    for epoch in range(epoches):
        logits = model(tensor_adjacency, tensor_x) #前向传播
        train_mask_logits = logits[tensor_train_mask] # 只选择训练节点进行监督
        loss = criterion(train_mask_logits, train_y) # 计算损失值
        optimizer.zero_grad()
        loss.backward() # 反向传播计算参数的梯度
        optimizer.step() # 使用优化方法进行梯度更新
        train_acc = test(tensor_train_mask) # 计算当前模型在训练集上的准确率
        val_acc = test(tensor_val_mask) # 计算当前模型在验证集上的准确率
        
        # 记录训练过程中的损失值和准确率的变化,用于画图
        loss_history.append(loss.item())
        train_acc_history.append(train_acc.item())
        val_acc_history.append(val_acc.item())
        
        print("Epoch {:03d}: Loss {:.4f}, TrainAcc {:.4f}, ValAcc {:.4f}".format(epoch, loss.item(), train_acc.item(), val_acc.item()))
    
    return loss_history, train_acc_history, val_acc_history


def test(mask):
    model.eval()
    with torch.no_grad():
        logits = model(tensor_adjacency, tensor_x)
        test_mask_logits = logits[mask]
        predict_y = test_mask_logits.max(1)[1]
        accuracy = torch.eq(predict_y, tensor_y[mask]).float().mean()
    return accuracy

def plot_loss_with_acc(loss_history, val_acc_history):
    fig = plt.figure()
    ax1 = fig.add_subplot(111)
    ax1.plot(range(len(loss_history)), loss_history,
             c=np.array([255, 71, 90]) / 255.)
    plt.ylabel('Loss')
    
    ax2 = fig.add_subplot(111, sharex=ax1, frameon=False)
    ax2.plot(range(len(val_acc_history)), val_acc_history,
             c=np.array([79, 179, 255]) / 255.)
    ax2.yaxis.tick_right()
    ax2.yaxis.set_label_position("right")
    plt.ylabel('ValAcc')
    
    plt.xlabel('Epoch')
    plt.title('Training Loss & Validation Accuracy')
    plt.show()

############# 开始训练 ###################

print('='*15)
print('开始训练')

loss, train_acc, val_acc = train()#每个epoch 模型在训练集上的loss 和验证集上的准确率
# 可视化展示结果
plot_loss_with_acc(loss, val_acc)

#计算最后训练好的模型在测试集上准确率
test_acc = test(tensor_test_mask)
print("Test accuarcy: ", test_acc.item()) 

  结果:  
在这里插入图片描述   在测试集上,有80%的准确率。  


开心洋葱 , 版权所有丨如未注明 , 均为原创丨未经授权请勿修改 , 转载请注明【深度学习实战】《深入浅出图神经网络》GCN实战(pytorch)
喜欢 (0)

您必须 登录 才能发表评论!

加载中……