• 欢迎访问开心洋葱网站,在线教程,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站,欢迎加入开心洋葱 QQ群
  • 为方便开心洋葱网用户,开心洋葱官网已经开启复制功能!
  • 欢迎访问开心洋葱网站,手机也能访问哦~欢迎加入开心洋葱多维思维学习平台 QQ群
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏开心洋葱吧~~~~~~~~~~~~~!
  • 由于近期流量激增,小站的ECS没能经的起亲们的访问,本站依然没有盈利,如果各位看如果觉着文字不错,还请看官给小站打个赏~~~~~~~~~~~~~!

基于Python的3R机器人运动仿真

人工智能 挽风 2199次浏览 0个评论

一、问题描述

  如右图所示的三自由度机械臂,关节1和关节2相互垂直,关节2和关节3相互平行。如图所示,所有关节均处于初始状态。   要求: (1) 定义并标注出各关节的正方向; (2) 定义机器人基坐标系{0}及连杆坐标系{1},{2},{3}; (3) 求变换矩阵 , , ; (4) 根据末端腕部位置 (x, y, z) 返求出对应关节 , , ; (5) 利用软件绘制出机器人模型的三维点线图,并控制机器人腕部沿半径r=0.1的圆弧运动.   基于Python的3R机器人运动仿真  

二、任务求解

 

2.1建立坐标系

  基于Python的3R机器人运动仿真  

2.2 变换矩阵

 

2.2.1 变换求解

  (1)连杆坐标系{1}——基坐标系{0}   原点重合,可绕z轴任意旋转   基于Python的3R机器人运动仿真   (2)连杆坐标系{2}——连杆坐标系{1} 先绕x轴旋转90°,再绕新得到的y轴旋转90°,然后沿新得到的y轴平移 ,最后得到的坐标系可绕z轴任意旋转   基于Python的3R机器人运动仿真   3)连杆坐标系{3}——连杆坐标系{2}   绕z轴旋转-90°,再沿新得到的y轴平移 ,最后得到的坐标系可绕z轴任意旋转   基于Python的3R机器人运动仿真  

2.2.2 物理意义求解

  变换矩阵的前三列,每列值对应的数为变换坐标系的坐标轴x、y、z在基坐标系中的坐标位置,第四列为变换坐标系的原点在基坐标系中的坐标位置,第四行为齐次补行数据,则可根据坐标系的位置直接列出下式:   基于Python的3R机器人运动仿真   可见,两种方式的结果表达式一致。

2.2.3 变换矩阵终解

  基于Python的3R机器人运动仿真  

2.3 逆运动学求解

 

2.3.1 矩阵逆推导

  由连杆坐标系{3}到基座坐标系{0}的齐次矩阵可以表示为   基于Python的3R机器人运动仿真   末端执行器的位置在基座坐标系{0}中的描述为   基于Python的3R机器人运动仿真   末端执行器的位置在基座坐标系{0}中的描述为   基于Python的3R机器人运动仿真   关系为:   基于Python的3R机器人运动仿真   根据矩阵对应元素相等,由MATLAB计算可得可得下面等式:  

x=-(7*cos(a2)*sin(a1))/25-(7*cos(a2)*sin(a1)*sin(a3))/20(7*cos(a3)*
sin(a1)*sin(a2))/20
y=(7*cos(a1)*cos(a2))/25+(7*cos(a1)*cos(a2)*sin(a3))/20+(7*cos(a1)*cos(a3)*sin(a2))/20
z=(7*sin(a2))/25 + (7*sin(a2)*sin(a3))/20 - (7*cos(a2)*cos(a3))/20 + 47/100

由   基于Python的3R机器人运动仿真   则:   基于Python的3R机器人运动仿真   由对应元素相等,得:

(x*cos(a1))/(cos(a1)^2 + sin(a1)^2) + (y*sin(a1))/(cos(a1)^2 + sin(a1)^2)=0

 (y*cos(a1))/(cos(a1)^2 + sin(a1)^2) - (x*sin(a1))/(cos(a1)^2 + sin(a1)^2)=(7*cos(a2))/25+(7*cos(a2)*sin(a3))/20+(7*cos(a3)*sin(a2))/20

z=(7*sin(a2))/25 + (7*sin(a2)*sin(a3))/20 - (7*cos(a2)*cos(a3))/20 + 47/100

  综上可得,   基于Python的3R机器人运动仿真  

2.3.2 几何推导

  在x0y平面,将末端执行器的轨迹投影到该平面,蓝色表示原位置,橘色代表移动后的位置,黑色坐标系为基坐标系,如下图:  
基于Python的3R机器人运动仿真   由图易见, 为末端执行器投影到xoy平面x与y的夹角,(逆时针为正),   基于Python的3R机器人运动仿真   在y0z平面,将末端执行器的轨迹投影到该平面,蓝色表示原位置,橘色代表移动后的位置,黑色坐标系为基坐标系,如下图:     基于Python的3R机器人运动仿真   基于Python的3R机器人运动仿真   将末端执行器的轨迹投影到下图所示平面,蓝色表示原位置,橘色代表移动后的位置,黑色坐标系为基坐标系,如下图:   基于Python的3R机器人运动仿真   构建直角三角形,可得:   基于Python的3R机器人运动仿真   综上,得各关节角与坐标位置的关系为:   基于Python的3R机器人运动仿真  

三、D-H模型法求解

 

3.1 坐标系建立

  0号杆件固连在基座上,建立基坐标系   基于Python的3R机器人运动仿真  

3.2 D-H参数

  基于Python的3R机器人运动仿真  

3.3 各关节变换矩阵

  若已知四个参数就完全确定了两连杆之间的相对关系。对此,我们建立基坐标系和连杆运动坐标系之间的变换关系。对于旋转关节可以确定以下的齐次矩阵   即先绕x轴旋转,   基于Python的3R机器人运动仿真   然后沿x轴移动,再沿基坐标系的z轴移动d,最后绕z轴旋转   将参数代入上式,由此可以得到各关节变换矩阵   基于Python的3R机器人运动仿真  

3.4 求逆变换

  同2.3.1  

四、软件仿真

 

4.1 程序代码

  用软件python(x,y)编写代码,如下:   基于Python的3R机器人运动仿真  

4.2 仿真结果

  基于Python的3R机器人运动仿真


开心洋葱 , 版权所有丨如未注明 , 均为原创丨未经授权请勿修改 , 转载请注明基于Python的3R机器人运动仿真
喜欢 (0)

您必须 登录 才能发表评论!

加载中……