• 欢迎访问开心洋葱网站,在线教程,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站,欢迎加入开心洋葱 QQ群
  • 为方便开心洋葱网用户,开心洋葱官网已经开启复制功能!
  • 欢迎访问开心洋葱网站,手机也能访问哦~欢迎加入开心洋葱多维思维学习平台 QQ群
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏开心洋葱吧~~~~~~~~~~~~~!
  • 由于近期流量激增,小站的ECS没能经的起亲们的访问,本站依然没有盈利,如果各位看如果觉着文字不错,还请看官给小站打个赏~~~~~~~~~~~~~!

YOLOv3目标检测、卡尔曼滤波、匈牙利匹配算法多目标追踪

人工智能 xiaorun 2638次浏览 0个评论

我先上下结果图吧,效果勉强还行,在这里我只训练了行人,官网的weights是coco数据集训练的,有80类;

YOLOv3目标检测、卡尔曼滤波、匈牙利匹配算法多目标追踪

 

1、YOLOV3目标检测

关于yolov3的原理我在这里就不解释了,可谷歌学术自行阅读,说实话yolov3的效果着实不错,但是源码是C的,不依赖其他任何库,看的云里雾里,在这里我用的darknet训练的,利用tensorflow+keras进行测试的;

关于tensorflow+keras版本yolov3,可参照

1 https://github.com/qqwweee/keras-yolo3

 

测试

(1)获取训练好的权重

wget https://pjreddie.com/media/files/yolov3.weights

 

(2)转换 Darknet YOLO 模型为 Keras 模型

python convert.py yolov3.cfg yolov3.weights model_data/yolo.h5
转换过程如图

YOLOv3目标检测、卡尔曼滤波、匈牙利匹配算法多目标追踪

(3)运行目标检测测试代码

python yolo.py

此时即可看到目标检测的效果

 

2、卡尔曼滤波追踪

关于卡尔曼滤波的理论这里不打算讲了,就是那个5个基本的公式,这里直接给出公式:

 

公式1:X(k|k-1) = FX(k-1 | k-1) + BU(k) + W(k)

公式2:P(k|k-1) = FP(k-1|k-1)F’ + Q(k)

公式3:X(k|k) = X(k|k-1) + Kg(k)[Z(k) – AX(k|k-1)

公式4:Kg(k) = P(k|k-1)A’/{AP(k|k-1)A’ + R} //卡尔曼增益

公式5:P(k|k) = (1- Kg(k) H) P(k|k-1)

 

另外,Z(k) = HX(k) + V,Z是测量值,X是系统值,W是过程噪声,V是测量噪声,H是测量矩阵,A是转移矩阵,Q是W的协方差,R是V的协方差,X(k|k-1)是估计值;X(k|k)是X(k|k-1)的最优估计值,即滤波估计值;P(k|k-1)是估计值误差方差

矩阵,P(k|k)是滤波误差方差矩阵。

下面给出Python版本的卡尔曼滤波小程序:

'''
    File name         : kalman_filter.py
    File Description  : Kalman Filter Algorithm Implementation
    Author            : Srini Ananthakrishnan
    Date created      : 07/14/2017
    Date last modified: 07/16/2017
    Python Version    : 2.7
'''

# Import python libraries
import numpy as np


class KalmanFilter(object):
    """Kalman Filter class keeps track of the estimated state of
    the system and the variance or uncertainty of the estimate.
    Predict and Correct methods implement the functionality
    Reference: https://en.wikipedia.org/wiki/Kalman_filter
    Attributes: None
    """

    def __init__(self):
        """Initialize variable used by Kalman Filter class
        Args:
            None
        Return:
            None
        """
        self.dt = 0.005  # delta time

        self.A = np.array([[1, 0], [0, 1]])  # matrix in observation equations
        self.u = np.zeros((2, 1))  # previous state vector

        # (x,y) tracking object center
        self.b = np.array([[0], [255]])  # vector of observations

        self.P = np.diag((3.0, 3.0))  # covariance matrix
        self.F = np.array([[1.0, self.dt], [0.0, 1.0]])  # state transition mat

        self.Q = np.eye(self.u.shape[0])  # process noise matrix
        self.R = np.eye(self.b.shape[0])  # observation noise matrix
        self.lastResult = np.array([[0], [255]])

    def predict(self):
        """Predict state vector u and variance of uncertainty P (covariance).
            where,
            u: previous state vector
            P: previous covariance matrix
            F: state transition matrix
            Q: process noise matrix
        Equations:
            u'_{k|k-1} = Fu'_{k-1|k-1}
            P_{k|k-1} = FP_{k-1|k-1} F.T + Q
            where,
                F.T is F transpose
        Args:
            None
        Return:
            vector of predicted state estimate
        """
        # Predicted state estimate
        self.u = np.round(np.dot(self.F, self.u))
        # Predicted estimate covariance
        self.P = np.dot(self.F, np.dot(self.P, self.F.T)) + self.Q
        self.lastResult = self.u  # same last predicted result
        return self.u

    def correct(self, b, flag):
        """Correct or update state vector u and variance of uncertainty P (covariance).
        where,
        u: predicted state vector u
        A: matrix in observation equations
        b: vector of observations
        P: predicted covariance matrix
        Q: process noise matrix
        R: observation noise matrix
        Equations:
            C = AP_{k|k-1} A.T + R
            K_{k} = P_{k|k-1} A.T(C.Inv)
            u'_{k|k} = u'_{k|k-1} + K_{k}(b_{k} - Au'_{k|k-1})
            P_{k|k} = P_{k|k-1} - K_{k}(CK.T)
            where,
                A.T is A transpose
                C.Inv is C inverse
        Args:
            b: vector of observations
            flag: if "true" prediction result will be updated else detection
        Return:
            predicted state vector u
        """

        if not flag:  # update using prediction
            self.b = self.lastResult
        else:  # update using detection
            self.b = b
        C = np.dot(self.A, np.dot(self.P, self.A.T)) + self.R
        K = np.dot(self.P, np.dot(self.A.T, np.linalg.inv(C)))

        self.u = np.round(self.u + np.dot(K, (self.b - np.dot(self.A,
                                                              self.u))))
        self.P = self.P - np.dot(K, np.dot(C, K.T))
        self.lastResult = self.u
        return self.u

3、匈牙利匹配算法

匈牙利算法原理可参考这篇博客,写的还不错

https://blog.csdn.net/jingshushu1995/article/details/80411325

下面我给出我的卡尔曼滤波之后的匈牙利匹配算法的代码

欢迎大家自己做修改,代码规范 并不好,勉强能够学习一下,后面我会再进行修改。谢谢赞赏

'''
    File name         : tracker.py
    File Description  : Tracker Using Kalman Filter & Hungarian Algorithm
    Date created      : 07/14/2017
    Date last modified: 07/16/2017
    Python Version    : 2.7
'''

# Import python libraries
import numpy as np
from kalman_filter import KalmanFilter
from common import dprint
from scipy.optimize import linear_sum_assignment


class Track(object):
    """Track class for every object to be tracked
    Attributes:
        None
    """

    def __init__(self, prediction, trackIdCount):
        """Initialize variables used by Track class
        Args:
            prediction: predicted centroids of object to be tracked
            trackIdCount: identification of each track object
        Return:
            None
        """
        self.track_id = trackIdCount  # identification of each track object
        self.KF = KalmanFilter()  # KF instance to track this object
        self.prediction = np.asarray(prediction)  # predicted centroids (x,y)
        self.skipped_frames = 0  # number of frames skipped undetected
        self.trace = []  # trace path


class Tracker(object):
    """Tracker class that updates track vectors of object tracked
    Attributes:
        None
    """

    def __init__(self, dist_thresh, max_frames_to_skip, max_trace_length,
                 trackIdCount):
        """Initialize variable used by Tracker class
        Args:
            dist_thresh: distance threshold. When exceeds the threshold,
                         track will be deleted and new track is created
            max_frames_to_skip: maximum allowed frames to be skipped for
                                the track object undetected
            max_trace_lenght: trace path history length
            trackIdCount: identification of each track object
        Return:
            None
        """
        self.dist_thresh = dist_thresh
        self.max_frames_to_skip = max_frames_to_skip
        self.max_trace_length = max_trace_length
        self.tracks = []
        self.trackIdCount = trackIdCount

    def Update(self, detections):
        """Update tracks vector using following steps:
            - Create tracks if no tracks vector found
            - Calculate cost using sum of square distance
              between predicted vs detected centroids
            - Using Hungarian Algorithm assign the correct
              detected measurements to predicted tracks
              https://en.wikipedia.org/wiki/Hungarian_algorithm
            - Identify tracks with no assignment, if any
            - If tracks are not detected for long time, remove them
            - Now look for un_assigned detects
            - Start new tracks
            - Update KalmanFilter state, lastResults and tracks trace
        Args:
            detections: detected centroids of object to be tracked
        Return:
            None
        """

        # Create tracks if no tracks vector found
        if (len(self.tracks) == 0):
            for i in range(len(detections)):
                track = Track(detections[i], self.trackIdCount)
                self.trackIdCount += 1
                self.tracks.append(track)

        # Calculate cost using sum of square distance between
        # predicted vs detected centroids
        N = len(self.tracks)
        M = len(detections)
        cost = np.zeros(shape=(N, M))   # Cost matrix
        for i in range(len(self.tracks)):
            for j in range(len(detections)):
                try:
                    diff = self.tracks[i].prediction - detections[j]
                    distance = np.sqrt(diff[0][0]*diff[0][0] +
                                       diff[1][0]*diff[1][0])
                    cost[i][j] = distance
                except:
                    pass

        # Let's average the squared ERROR
        cost = (0.5) * cost
        # Using Hungarian Algorithm assign the correct detected measurements
        # to predicted tracks
        assignment = []
        for _ in range(N):
            assignment.append(-1)
        row_ind, col_ind = linear_sum_assignment(cost)
        for i in range(len(row_ind)):
            assignment[row_ind[i]] = col_ind[i]

        # Identify tracks with no assignment, if any
        un_assigned_tracks = []
        for i in range(len(assignment)):
            if (assignment[i] != -1):
                # check for cost distance threshold.
                # If cost is very high then un_assign (delete) the track
                if (cost[i][assignment[i]] > self.dist_thresh):
                    assignment[i] = -1
                    un_assigned_tracks.append(i)
                pass
            else:
                self.tracks[i].skipped_frames += 1

        # If tracks are not detected for long time, remove them
        del_tracks = []
        for i in range(len(self.tracks)):
            if (self.tracks[i].skipped_frames > self.max_frames_to_skip):
                del_tracks.append(i)
        if len(del_tracks) > 0:  # only when skipped frame exceeds max
            for id in del_tracks:
                if id < len(self.tracks):
                    del self.tracks[id]
                    del assignment[id]
                else:
                    dprint("ERROR: id is greater than length of tracks")

        # Now look for un_assigned detects
        un_assigned_detects = []
        for i in range(len(detections)):
                if i not in assignment:
                    un_assigned_detects.append(i)

        # Start new tracks
        if(len(un_assigned_detects) != 0):
            for i in range(len(un_assigned_detects)):
                track = Track(detections[un_assigned_detects[i]],
                              self.trackIdCount)
                self.trackIdCount += 1
                self.tracks.append(track)

        # Update KalmanFilter state, lastResults and tracks trace
        for i in range(len(assignment)):
            self.tracks[i].KF.predict()

            if(assignment[i] != -1):
                self.tracks[i].skipped_frames = 0
                self.tracks[i].prediction = self.tracks[i].KF.correct(
                                            detections[assignment[i]], 1)
            else:
                self.tracks[i].prediction = self.tracks[i].KF.correct(
                                            np.array([[0], [0]]), 0)

            if(len(self.tracks[i].trace) > self.max_trace_length):
                for j in range(len(self.tracks[i].trace) -
                               self.max_trace_length):
                    del self.tracks[i].trace[j]

            self.tracks[i].trace.append(self.tracks[i].prediction)
            self.tracks[i].KF.lastResult = self.tracks[i].prediction



4、整体代码




# -*- coding: utf-8 -*-
"""
Class definition of YOLO_v3 style detection model on image and video
"""
from tracker import Tracker
import copy
import colorsys
import os
from timeit import default_timer as timer
import cv2
import numpy as np
from keras import backend as K
from keras.models import load_model
from keras.layers import Input
from PIL import Image, ImageFont, ImageDraw

from yolo3.model import yolo_eval, yolo_body, tiny_yolo_body
from yolo3.utils import letterbox_image
import os
from keras.utils import multi_gpu_model

class YOLO(object):
    _defaults = {
        "model_path": 'model_data/yolov3.h5',
        "anchors_path": 'model_data/yolo_anchors.txt',
        "classes_path": 'model_data/coco_classes.txt',
        "score" : 0.3,
        "iou" : 0.45,
        "model_image_size" : (416, 416),
        "gpu_num" : 1,
    }

    @classmethod
    def get_defaults(cls, n):
        if n in cls._defaults:
            return cls._defaults[n]
        else:
            return "Unrecognized attribute name '" + n + "'"

    def __init__(self, **kwargs):
        self.__dict__.update(self._defaults) # set up default values
        self.__dict__.update(kwargs) # and update with user overrides
        self.class_names = self._get_class()
        self.anchors = self._get_anchors()
        self.sess = K.get_session()
        self.boxes, self.scores, self.classes = self.generate()

    def _get_class(self):
        classes_path = os.path.expanduser(self.classes_path)
        with open(classes_path) as f:
            class_names = f.readlines()
        class_names = [c.strip() for c in class_names]
        return class_names

    def _get_anchors(self):
        anchors_path = os.path.expanduser(self.anchors_path)
        with open(anchors_path) as f:
            anchors = f.readline()
        anchors = [float(x) for x in anchors.split(',')]
        return np.array(anchors).reshape(-1, 2)

    def generate(self):
        model_path = os.path.expanduser(self.model_path)
        assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'

        # Load model, or construct model and load weights.
        num_anchors = len(self.anchors)
        num_classes = len(self.class_names)
        is_tiny_version = num_anchors==6 # default setting
        try:
            self.yolo_model = load_model(model_path, compile=False)
        except:
            self.yolo_model = tiny_yolo_body(Input(shape=(None,None,3)), num_anchors//2, num_classes) \
                if is_tiny_version else yolo_body(Input(shape=(None,None,3)), num_anchors//3, num_classes)
            self.yolo_model.load_weights(self.model_path) # make sure model, anchors and classes match
        else:
            assert self.yolo_model.layers[-1].output_shape[-1] == \
                num_anchors/len(self.yolo_model.output) * (num_classes + 5), \
                'Mismatch between model and given anchor and class sizes'

        print('{} model, anchors, and classes loaded.'.format(model_path))

        # Generate colors for drawing bounding boxes.
        hsv_tuples = [(x / len(self.class_names), 1., 1.)
                      for x in range(len(self.class_names))]
        self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
        self.colors = list(
            map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
                self.colors))
        np.random.seed(10101)  # Fixed seed for consistent colors across runs.
        np.random.shuffle(self.colors)  # Shuffle colors to decorrelate adjacent classes.
        np.random.seed(None)  # Reset seed to default.

        # Generate output tensor targets for filtered bounding boxes.
        self.input_image_shape = K.placeholder(shape=(2, ))
        if self.gpu_num>=2:
            self.yolo_model = multi_gpu_model(self.yolo_model, gpus=self.gpu_num)
        boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors,
                len(self.class_names), self.input_image_shape,
                score_threshold=self.score, iou_threshold=self.iou)
        return boxes, scores, classes

    def detect_image(self, image):
        start = timer()
        centers=[]
        if self.model_image_size != (None, None):
            assert self.model_image_size[0]%32 == 0, 'Multiples of 32 required'
            assert self.model_image_size[1]%32 == 0, 'Multiples of 32 required'
            boxed_image = letterbox_image(image, tuple(reversed(self.model_image_size)))
        else:
            new_image_size = (image.width - (image.width % 32),
                              image.height - (image.height % 32))
            boxed_image = letterbox_image(image, new_image_size)
        image_data = np.array(boxed_image, dtype='float32')

        #print(image_data.shape)
        image_data /= 255.
        image_data = np.expand_dims(image_data, 0)  # Add batch dimension.

        out_boxes, out_scores, out_classes = self.sess.run(
            [self.boxes, self.scores, self.classes],
            feed_dict={
                self.yolo_model.input: image_data,
                self.input_image_shape: [image.size[1], image.size[0]],
                K.learning_phase(): 0
            })

        #print('Found {} boxes for {}'.format(len(out_boxes), 'img'))

        font = ImageFont.truetype(font='font/FiraMono-Medium.otf',
                    size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32'))
        thickness = (image.size[0] + image.size[1]) // 300

        for i, c in reversed(list(enumerate(out_classes))):
            predicted_class = self.class_names[c]
            box = out_boxes[i]
            score = out_scores[i]
            number=len(out_boxes)
            label = '{} {:.2f}'.format(predicted_class, score)
            draw = ImageDraw.Draw(image)
            label_size = draw.textsize(label, font)
            if c==0:
                top, left, bottom, right = box
                center=(int ((left+right)//2),int((top+bottom)//2))
                b=np.array([[(left+right)//2],[(top+bottom)//2]])

                centers.append(b)
                top = max(0, np.floor(top + 0.5).astype('int32'))
                left = max(0, np.floor(left + 0.5).astype('int32'))
                bottom = min(image.size[1], np.floor(bottom + 0.5).astype('int32'))
                right = min(image.size[0], np.floor(right + 0.5).astype('int32'))
                #print(label, (left, top), (right, bottom))

                if top - label_size[1] >= 0:
                    text_origin = np.array([left, top - label_size[1]])
                else:
                    text_origin = np.array([left, top + 1])

            # My kingdom for a good redistributable image drawing library.
                for i in range(thickness):
                    draw.rectangle(
                        [left + i, top + i, right - i, bottom - i],
                        outline=self.colors[c])
                draw.rectangle(
                    [tuple(text_origin), tuple(text_origin + label_size)],
                    fill=self.colors[c])
                #draw.rectangle(
                    #[tuple(text_origin), tuple(text_origin + label_size)],
                    #fill=self.colors[c])
                draw.text(text_origin, label, fill=(0, 0, 0), font=font)

                del draw

        end = timer()
        #print(end - start)
        return image,centers,number

    def close_session(self):
        self.sess.close()

def detect_video(yolo, video_path, output_path=""):

    vid = cv2.VideoCapture(video_path)
    if not vid.isOpened():
        raise IOError("Couldn't open webcam or video")
    video_FourCC    = int(vid.get(cv2.CAP_PROP_FOURCC))
    video_fps       = vid.get(cv2.CAP_PROP_FPS)
    video_size      = (int(vid.get(cv2.CAP_PROP_FRAME_WIDTH)),
                        int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT)))
    isOutput = True if output_path != "" else False
    if isOutput:
        #print("!!! TYPE:", type(output_path), type(video_FourCC), type(video_fps), type(video_size))
        out = cv2.VideoWriter(output_path, video_FourCC, video_fps, video_size)
    accum_time = 0
    curr_fps = 0
    fps = "FPS: ??"
    prev_time = timer()
    tracker = Tracker(160, 30, 6, 100)
    # Variables initialization
    skip_frame_count = 0
    track_colors = [(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0),
                    (0, 255, 255), (255, 0, 255), (255, 127, 255),
                    (127, 0, 255), (127, 0, 127)]
    pause = False
    while True:
        return_value, frame = vid.read()
        print(frame.shape)
        image = Image.fromarray(frame)
        image,centers,number = yolo.detect_image(image)
        print(image.size)
        result = np.asarray(image)
        curr_time = timer()
        exec_time = curr_time - prev_time
        prev_time = curr_time
        accum_time = accum_time + exec_time
        curr_fps = curr_fps + 1
        if accum_time > 1:
            accum_time = accum_time - 1
            fps = "FPS: " + str(curr_fps)
            curr_fps = 0
        font = cv2.FONT_HERSHEY_SIMPLEX
        #cv2.putText(result, text=fps, org=(3, 15), fontFace=cv2.FONT_HERSHEY_SIMPLEX,fontScale=0.50, color=(255, 0, 0), thickness=2)
        cv2.putText(result, str(number), (20,  40), font, 1, (0, 0, 255), 5)
        #for k in range(len(centers)):

            #cv2.circle(frame, centers[k], 3, (255, 255, 0), 3)
            #cv2.imshow("xiao",frame)
        #cv2.waitKey(100000)
        ############################################################################################
        #print(len(centers))
        #for i in range(len(centers)):
            #print(centers[i])
            #cv2.waitKey(0)
        if (len(centers) > 0):

            # Track object using Kalman Filter
            tracker.Update(centers)

            # For identified object tracks draw tracking line
            # Use various colors to indicate different track_id
            for i in range(len(tracker.tracks)):
                if (len(tracker.tracks[i].trace) > 1):
                    for j in range(len(tracker.tracks[i].trace) - 1):
                        # Draw trace line
                        x1 = tracker.tracks[i].trace[j][0][0]
                        y1 = tracker.tracks[i].trace[j][1][0]
                        x2 = tracker.tracks[i].trace[j + 1][0][0]
                        y2 = tracker.tracks[i].trace[j + 1][1][0]

                        clr = tracker.tracks[i].track_id % 9
                        cv2.line(result, (int(x1), int(y1)), (int(x2), int(y2)),
                                 track_colors[clr], 4)
                        #x3 = tracker.tracks[i].track_id
                        #cv2.putText(result,str(tracker.tracks[j].track_id),(int(x1),int(y1)),font,track_colors[j],3)
                        #cv2.circle(result,(int(x1),int(y1)),3,track_colors[j],3)
            # Display the resulting tracking frame
            cv2.imshow('Tracking', result)
            ###################################################
        cv2.namedWindow("result", cv2.WINDOW_NORMAL)
        cv2.imshow("result", result)
        if isOutput:
            out.write(result)
        if cv2.waitKey(100) & 0xFF == ord('q'):
            break
    yolo.close_session()

 


开心洋葱 , 版权所有丨如未注明 , 均为原创丨未经授权请勿修改 , 转载请注明YOLOv3目标检测、卡尔曼滤波、匈牙利匹配算法多目标追踪
喜欢 (0)

您必须 登录 才能发表评论!

加载中……