• 欢迎访问开心洋葱网站,在线教程,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站,欢迎加入开心洋葱 QQ群
  • 为方便开心洋葱网用户,开心洋葱官网已经开启复制功能!
  • 欢迎访问开心洋葱网站,手机也能访问哦~欢迎加入开心洋葱多维思维学习平台 QQ群
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏开心洋葱吧~~~~~~~~~~~~~!
  • 由于近期流量激增,小站的ECS没能经的起亲们的访问,本站依然没有盈利,如果各位看如果觉着文字不错,还请看官给小站打个赏~~~~~~~~~~~~~!

使用eigen库进行空间变换

人工智能 旧人赋荒年 3073次浏览 0个评论

使用eigen库进行空间变换

  在三维空间中,常常需要变换当前机器人的位姿计算定义的绝对坐标系和当前机器人所处相对坐标系之间的关系。而主要的变换则是平移和旋转,有时候可能需要尺度变换,那么就可以描述为:  

Transform<float,3,Affine> T = Translation3f(p) * AngleAxisf(a,axis) * Scaling(s);

  而Affine3d T是一个4*4齐次矩阵变换。  

旋转

 

Eigen::Quaternionf quater;

  可以采用沿着某一个轴进行计算,  

Eigen::AngleAxisd(M_PI/2.0,Eigen::Vector3d::UnitZ());

  也可以直接给定参数  

quater.x() = 0;
quater.y() = 0;
quater.z() = sin(M_PI/2.0 / 2.0);
quater.w() = cos(M_PI/2.0 / 2.0);

 

平移

 

Eigen::Translation3f translation(x,y,z);

 

尺度缩放

 

Scaling(sx, sy)
Scaling(sx, sy, sz)
Scaling(s)
Scaling(vecN)

 

仿射变换

 

//仿射变换矩阵
Eigen::Affine3f affine3f = translation*quater.toRotationMatrix();

//求逆矩阵
affine3f = affine3f.inverse();

 

对三维点进行变换

 

//变换前的点
Eigen::Vector3f v3f_a(x_m, y_m, 0.0);

//变换后的点
Eigen::Vector3f v3f_b = affine3f*v3f_a;

  eigen空间变换详细文档,以便查找其他函数的使用方法。   有时候需要知道affine3f的四维矩阵Matrix4f,采用如下装换  

Eigen::Matrix4f a;
Eigen::Affine3f b;
b.matrix() = a;

 

Eigen库使用教程

 

  • Multiplication:

 

Eigen::Matrix3d A = Eigen::Matrix3d::Identity();

Eigen::Vector3d a(0.5, 3, -0.4);

Eigen::Vector3d Aa = A * a;

std::cout << "The multiplication of A * a is " << std::endl << Aa << std::endl;

Eigen::MatrixXd B = Eigen::MatrixXd::Identity(6, 5);

Eigen::VectorXd b(5);

b << 1, 4, 6, -2, 0.4;

Eigen::VectorXd Bb = B * b;

std::cout << "The multiplication of B * b is " << std::endl << Bb << std::endl;

 

  • Transpose and inverse:

 

Eigen::MatrixXd A(3, 2);

A << 1, 2,

2, 3,

3, 4;

Eigen::MatrixXd B = A.transpose();// the transpose of A is a 2x3 matrix

Eigen::MatrixXd C = (B * A).inverse();// computer the inverse of BA, which is a 2x2 matrix

 

  • Dot product and cross product:

 

Eigen::Vector3d v(1, 2, 3);

Eigen::Vector3d w(0, 1, 2);

double vDotw = v.dot(w); // dot product of two vectors

Eigen::Vector3d vCrossw = v.cross(w); // cross product of two vectors

 

  • Accessing matrix:

 

Eigen::MatrixXd A = Eigen::MatrixXd::Random(7, 9);

std::cout << "The element at fourth row and 7the column is " << A(3, 6) << std::endl;

Eigen::MatrixXd B = A.block(1, 2, 3, 3);

std::cout << "Take sub-matrix whose upper left corner is A(1, 2)" << std::endl << B << std::endl;

Eigen::VectorXd a = A.col(1); // take the second column of A

Eigen::VectorXd b = B.row(0); // take the first row of B

Eigen::VectorXd c = a.head(3);// take the first three elements of a

Eigen::VectorXd d = b.tail(2);// take the last two elements of b

 

  • Quaternion:

 

Eigen::Quaterniond q(2, 0, 1, -3); 

std::cout << "This quaternion consists of a scalar " << q.w() << " and a vector " << std::endl << q.vec() << std::endl;

q.normalize();

std::cout << "To represent rotation, we need to normalize it such that its length is " << q.norm() << std::endl;

Eigen::Vector3d v(1, 2, -1);

Eigen::Quaterniond p;

p.w() = 0;

p.vec() = v;

Eigen::Quaterniond rotatedP = q * p * q.inverse(); 

Eigen::Vector3d rotatedV = rotatedP.vec();

std::cout << "We can now use it to rotate a vector " << std::endl << v << " to " << std::endl << rotatedV << std::endl;

Eigen::Matrix3d R = q.toRotationMatrix(); // convert a quaternion to a 3x3 rotation matrix

std::cout << "Compare with the result using an rotation matrix " << std::endl << R * v << std::endl;

Eigen::Quaterniond a = Eigen::Quterniond::Identity();

Eigen::Quaterniond b = Eigen::Quterniond::Identity();

Eigen::Quaterniond c; // Adding two quaternion as two 4x1 vectors is not supported by the EIgen API. That is, c = a + b is not allowed. We have to do this in a hard way

c.w() = a.w() + b.w();

c.x() = a.x() + b.x();

c.y() = a.y() + b.y();

c.z() = a.z() + b.z();

  cs4496 Computer Animation 使用eigen 教程


开心洋葱 , 版权所有丨如未注明 , 均为原创丨未经授权请勿修改 , 转载请注明使用eigen库进行空间变换
喜欢 (0)

您必须 登录 才能发表评论!

加载中……