• 欢迎访问开心洋葱网站,在线教程,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站,欢迎加入开心洋葱 QQ群
  • 为方便开心洋葱网用户,开心洋葱官网已经开启复制功能!
  • 欢迎访问开心洋葱网站,手机也能访问哦~欢迎加入开心洋葱多维思维学习平台 QQ群
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏开心洋葱吧~~~~~~~~~~~~~!
  • 由于近期流量激增,小站的ECS没能经的起亲们的访问,本站依然没有盈利,如果各位看如果觉着文字不错,还请看官给小站打个赏~~~~~~~~~~~~~!

Eigen的使用总结

人工智能 月照银海似蛟龙 2141次浏览 0个评论

Eigen 是一个 C++ 开源线性代数库

它提供了快速的有关矩阵的线性代数运算,还包括解方程等功能。

Eigen 它是一个纯用头文件搭建起来的库,只能找到它的头文件,没有.so 或.a 那样的二进制文件

在使用时,只需引入 Eigen 的头文件即可,不需要链接它的库文件

下面总结下 其 使用 方法 ,方便忘记时翻阅

声明矩阵和向量

Eigen 以矩阵为基本数据单元。它是一个模板类。它的前三个参数为:数据类型,行,列

=============================================

声明一个基本的矩阵

声明一个 2*3 的 float 矩阵

//声明一个 2*3 的 float 矩阵
Eigen::Matrix<float, 2, 3> matrix_23;

=============================================

声明一个基本的向量

同时,Eigen 通过 typedef 提供了许多内置类型,不过底层仍是 Eigen::Matrix
Vector3d 实质上是 Eigen::Matrix<double, 3,=”” 1=””></double,>

//声明一个 三维向量 
Eigen::Vector3d v_3d;

=============================================

矩阵初始化为零

还有 Matrix3d 实质上是 Eigen::Matrix<double, 3,=”” 3=””></double,>

Eigen::Matrix3d matrix_33 = Eigen::Matrix3d::Zero(); //初始化为零

=============================================

矩阵赋值随机数

matrix_33 = Eigen::Matrix3d::Random();//矩阵取随机数

Eigen的使用总结

=============================================

声明动态大小的矩阵

如果不确定矩阵大小,可以使用动态大小的矩阵

Eigen::Matrix< double, Eigen::Dynamic, Eigen::Dynamic > matrix_dynamic;
Eigen::MatrixXd matrix_x;//相当于上面一行

=============================================

对矩阵操作

输入数据

matrix_23 << 1, 2, 3, 4, 5, 6;//矩阵输入
v_3d << 3, 2, 1;//向量输入

=============================================

输出数据

cout << matrix_23 << endl;

打印的结果
Eigen的使用总结

=============================================

访问矩阵中的元素

通过()访问矩阵中的元素

for (int i=0; i<1; i++)
    for (int j=0; j<2; j++)
        cout<<matrix_23(i,j)<<endl;

Eigen的使用总结

=============================================

改变矩阵数据类型

matrix_23.cast< double >() 将 float 转换成了 double

matrix_23.cast<double>()

=============================================

矩阵相乘

Eigen::Matrix<double, 2, 1> result = matrix_23.cast<double>() * v_3d;

注意 两矩阵的类型要一致 ,矩阵的维度有匹配 ,否则会报错
matrix_23.cast< double >() 将 float 转换成了 double
Eigen的使用总结

 Eigen::Matrix<double, 2, 1> result_wrong_type = matrix_23 * v_3d;  // 这样不对  类型不匹配

报错如下:

error: no type named ‘ReturnType’ in ‘struct Eigen::ScalarBinaryOpTraits<float, double,=”” eigen::internal::scalar_product_op<float,=”” double=””> >’
typedef typename ScalarBinaryOpTraits
::Scalar, typename traits

::Scalar>::ReturnType Scalar;

</float,>

在这里插入图片描述

 Eigen::Matrix<double, 2, 3> result_wrong_dimension = matrix_23.cast<double>() * v_3d;// 这样不对  维度不匹配

报错如下

/usr/local/include/eigen3/Eigen/src/Core/PlainObjectBase.h:732:41: required from ‘Derived& Eigen::PlainObjectBase
::_set_noalias(const Eigen::DenseBase

&) [with OtherDerived = Eigen::Product<eigen::cwiseunaryop<eigen::internal::scalar_cast_op<float, double=””>, const Eigen::Matrix<float, 2,=”” 3=””> >, Eigen::Matrix<double, 3,=”” 1=””>, 0>; Derived = Eigen::Matrix<double, 2,=”” 3,=”” 0,=”” 3=””>]’

/usr/local/include/eigen3/Eigen/src/Core/PlainObjectBase.h:537:19: required from ‘Eigen::PlainObjectBase

::PlainObjectBase(const Eigen::DenseBase

&) [with OtherDerived = Eigen::Product<eigen::cwiseunaryop<eigen::internal::scalar_cast_op<float, double=””>, const Eigen::Matrix<float, 2,=”” 3=””> >, Eigen::Matrix<double, 3,=”” 1=””>, 0>; Derived = Eigen::Matrix<double, 2,=”” 3,=”” 0,=”” 3=””>]’

/usr/local/include/eigen3/Eigen/src/Core/Matrix.h:377:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase

&) [with OtherDerived = Eigen::Product<eigen::cwiseunaryop<eigen::internal::scalar_cast_op<float, double=””>, const Eigen::Matrix<float, 2,=”” 3=””> >, Eigen::Matrix<double, 3,=”” 1=””>, 0>; _Scalar = double; int _Rows = 2; int _Cols = 3; int _Options = 0; int _MaxRows = 2; int _MaxCols = 3]’

/home/jone/slam_learn/eigneMatrix_lianxi/eigenMatrix.cpp:68:84: required from here

/usr/local/include/eigen3/Eigen/src/Core/util/StaticAssert.h:33:40: error: static assertion failed: YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES #define EIGEN_STATIC_ASSERT(X,MSG) static_assert(X,#MSG);</double,></float,></eigen::cwiseunaryop<eigen::internal::scalar_cast_op<float,>
</double,></double,></float,></eigen::cwiseunaryop<eigen::internal::scalar_cast_op<float,>

</double,></double,></float,></eigen::cwiseunaryop<eigen::internal::scalar_cast_op<float,>

在这里插入图片描述

=============================================

矩阵转置

转置

matrix_33.transpose()

Eigen的使用总结

=============================================

各元素和

各元素和

matrix_33.sum()

Eigen的使用总结

=============================================

matrix_33.trace()

Eigen的使用总结

数乘

数乘

10*matrix_33

Eigen的使用总结

matrix_33.inverse()

Eigen的使用总结

=============================================

行列式

行列式

 matrix_33.determinant()

Eigen的使用总结

=============================================

求特征值

求特征值
对角化 A(T)_A
Eigen::SelfAdjointEigenSolver
eigen_solver ( matrix_33.transpose()_matrix_33 );

cout << “Eigen values = “ << eigen_solver.eigenvalues() << endl;

cout << “Eigen vectors = “ << eigen_solver.eigenvectors() << endl;

Eigen的使用总结

===============================================

利用矩阵解方程

直接求逆解方程

求解方程

求解 matrix_NN * x = v_Nd 这个方程
直接求逆自然是最直接的,但是求逆运算量大

#define MATRIX_SIZE 50

Eigen::Matrix< double, MATRIX_SIZE, MATRIX_SIZE > matrix_NN;
matrix_NN = Eigen::MatrixXd::Random( MATRIX_SIZE, MATRIX_SIZE );
Eigen::Matrix< double, MATRIX_SIZE, 1> v_Nd;
v_Nd = Eigen::MatrixXd::Random( MATRIX_SIZE,1 );

// 直接求逆
Eigen::Matrix<double,MATRIX_SIZE,1> x = matrix_NN.inverse()*v_Nd;

Eigen的使用总结

矩阵分解(QR) 解方程

// 通常用矩阵分解来求,例如 QR 分解,速度会快很多
x = matrix_NN.colPivHouseholderQr().solve(v_Nd);

Eigen的使用总结


开心洋葱 , 版权所有丨如未注明 , 均为原创丨未经授权请勿修改 , 转载请注明Eigen的使用总结
喜欢 (0)

您必须 登录 才能发表评论!

加载中……