• 欢迎访问开心洋葱网站,在线教程,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站,欢迎加入开心洋葱 QQ群
  • 为方便开心洋葱网用户,开心洋葱官网已经开启复制功能!
  • 欢迎访问开心洋葱网站,手机也能访问哦~欢迎加入开心洋葱多维思维学习平台 QQ群
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏开心洋葱吧~~~~~~~~~~~~~!
  • 由于近期流量激增,小站的ECS没能经的起亲们的访问,本站依然没有盈利,如果各位看如果觉着文字不错,还请看官给小站打个赏~~~~~~~~~~~~~!

pcl_ros框架

人工智能 龙啸wyh 2558次浏览 0个评论

1.pcl_tutorial官方给的模板  

int main(int argc, char** argv)
{
  pcl::PCLPointCloud2::Ptr cloud (new pcl::PCLPointCloud2 ());
  pcl::PCLPointCloud2::Ptr cloud_filtered (new pcl::PCLPointCloud2 ());
  //建立两个容器,容纳输入点云和输出点云,pcl格式.
  
  //Fill in the point cloud  
  pcl::PCDReader::reader;
  reader.read ("filename.pcd", *cloud);  //把pcd格式的点云作为输入点云  
  std::cerr << "pointcloud number before filtering:"<< cloud->width * cloud->height <<"data points ("<< pcl::getFieldsList (*cloud) << ")."
  //cloud->width,cloud->height 点云的宽高相乘为点云的数量.
  //pcl::getFieldsList()  用于获得*cloud点云的包含的点云信息种类 (x,y,z,intensity)
  
  //create the filtering object
  pcl::VoxelGrid<pcl::PCLPointCloud2> sor;
  sor.setInputCloud (cloud);
  sor.setLeafSize (0.01f,0.01f,0.01f);
  sor.filter (*cloud_filtered);
 
 std::cerr << "pointcloud number after filtering" << cloud_filtered->width * cloud_filtered->height << "(" << pcl::getFeildsList (*cloud_filtered) <<").";
  
  pcl::PCDWriter writer;
  writer.writer ("output_filename.pcd", *cloud_filtered ,Eigen::Vector4f::zero () , Eigen::Quaternion f::Identify (), false);
 
  return (0);
}

  编写一个点云处理程序的步骤: 1.主函数 2.编写点云输入输出容器 3.读取文件并赋值给输入容器 4.点云处理并赋值给输出容器 5.输出并保存   2.结合ros的pcl.  

#include <ros/ros.h>
// PCL specific includes
#include <sensor_msgs/PointCloud2.h>
#include <pcl_conversions/pcl_conversions.h>
#include <pcl/point_cloud.h>
#include <pcl/point_types.h>
 
ros::Publisher pub
 
void cloud_cb(const sensor_msgs::PointCloud2ConstPtr& input)
{
  //create a container for data
  sensor_msgs::PointCloud2 output;
  
  //do data processing here...
  output = *input;
  
  //publish the data
  pub.publish(output);
}
 
 
int main (int argc , char** argv)
{
  //initialize ros
  ros::init (argc, argv, "package_name");
  ros::NodeHandel nh;
 
  //create a ros subscriber for the input point cloud
  ros::Subscriber sub = nh.subscribe("input",1,cloud_cb);
  //create a ros publisher for the output point cloud
  pub = nh.advertise<sensor_msgs::PointCloud2> ("output",1);
 
  //spin
  ros::spin ();
}

  编写主函数节点 int main (int argc,char** argv) 1.初始化节点 ros::init ( ) 2.实例化节点 ros::NodeHandle nh; 3.订阅话题  ros::Subsriber sub=nh.subscribe (“input”,1,cloud_cb); 4.发布话题  ros::Publisher pub=nh.advertise<sensor_msgs::PointCloud2> (“output”,1) 5.ros::spin ()   编写点云处理总函数 void cloud_cb (const sensor_msgs::PointCloud2ConsrPtr& input) 1.输出容器 2.点云处理(包括点云数据类型转换) 3.发布话题???这个不完善啊,我去看一下自己的代码.   3.90度点云分割 (ros+rviz)   1)头文件 headfilename.h 头文件里包含 要引用的头文件;常数;结构体;类.等  

#pragma once
 
#include <ros/ros.h>
#include <pcl/point_cloud.h>
#include <pcl_conversions/pcl_conversions.h>
#include <pcl/point_types.h>
#include <pcl/conversions.h>
#include <pcl_ros/transforms.h>
 
#include <pcl/filters/extract_indices.h>
 
#include <sensor_msgs/PointCloud2.h>
#include<pcl/io/pcd_io.h>//which contains the required definitions to load and store point clouds to PCD and other file formats.
 
#define CLIP_COR 0 //     x  zuobiao
 
Class PclTestCore
{
  
private:
  ros::Subscriber sub_point_cloud_;
  ros::Publisher pub_point_cloud_;
  
  void point_cb (const sensor_msgs::PointCloud2ConstPtr &in_cloud);
  void clip_above (double CLIP_COR, const pcl::PointCloud<pcl::PointXYZI>::Ptr in,const pcl::PointCloud<pcl::PointXYZI>::Ptr out)
  void clip_xy (const pcl::PointCloud<pcl::PointXYZI>::Ptr in,const pcl::PointCloud<pcl::PointXYZI>::Ptr out)
 
public:
  PclTestCore (ros::NodeHandle &nh);
  ~PclTestCore();
  void Spin();
};

  1.头文件编写 2.常数 3.编写类 Class PclTestCore private: ros::Subscriber sub_point_cloud_;ros::Publisher pub_point_cloud_;void point_cb(const sensor_msgs::PointCloud2ConstPtr &in_cloud);void clip_above(double CLIP_COR,const pcl::PointCloud::Ptr in,const pcl::PointCloud::Ptr out) 和其他点云处理函数 public: PclTestCore(ros::NodeHandle &nh);~PclTestCore(); void Spin()  

  1. _node:主函数节点

 

#include <pcl/point_types.h>
#include <pcl/conversions.h>
#include <pcl_ros/transforms.h>
 
#include <pcl/filters/extract_indices.h>
 
#include <sensor_msgs/PointCloud2.h>
#include<pcl/io/pcd_io.h>//which contains the required definitions to load and store point clouds to PCD and other file formats.
 
#define CLIP_COR 0 //     x  zuobiao
 
int main(int argc , char **argv)
{
  ros::init(argc,argv,"package_name");
  ros::NodeHandle nh;
  PclTestCore core(nh);
  return 0;
}

  主节点编写: 1.节点初始化 ros::init(argc,argv,“package_name”) 2.节点实例化 ros::NodeHandle nh 3.对节点进行操作 PclTestCore core(nh) 4.return 0   3)core_node 节点编写  

#include "   .h"
PclTestCore::PclTestCore(ros::NodeHandel &nh)
{
  sub_point_cloud_ = nh.Subcriber("/velodyne_points",10,&PclTestCore::point_cb,this)
  in_publisher = nh.advertise<sensor_msgs::PointCloud2>("/cloud_msg",10)
 
  ros::spin();
}
 
PclTestCore::~PclTestCore(){ }
void PclTestCore::spin() { }
 
void PclTestCore::clip_above(double clip_cor,const pcl::PointCloud<pcl::PointXYZ>::Ptr in,const pcl::PointCloud<pcl::PointXYZI>::Ptr out)
{
  pcl::ExtractIndices<pcl::PointXYZI> cliper;
  cliper.SetInputCloud(in);
  pcl::PointIndices indices;
  for (size_t i=0; i<in->points.size();i++)
  {
    if(in->points[i].x >clip_cor)
    {
      indices.indices.push_back(i);
    }
  }
  cliper.setIndices(boost::make_shared<pcl::PointIndices>(indices));
  cliper.setNegative(true);
  cliper.filter(*out);
  
}
 
void PclTestCore::clip_xy (const pcl::PointCloud<pcl::PointXYZI>::Ptr in,const pcl::PointCloud<PointXYZI>::Ptr out)
{
  pcl::ExtractIndices<pcl::PointXYZI> cliper;
  pcl::setPointCloud(in);
  pcl::PointIndices indices;
  
  for(size_t i=0;i<in->points.size();i++)
  {
    if(in->points[i].x<in->points[i].y)
    {
      indices.indices.push_back(i);
    }
  }
 
  cliper.setIndices(boost::make_shared<pcl::PointIndices>(indices));
  cliper.setNegative(true);
  cliper.filter(*out);
}
 
 
ros::Publisher in_publisher;
void PclTestCore::point_cb(const sensor_msgs::PointCloud2ConstPtr &in_cloud_ptr)
{
    pcl::PointCloud<pcl::PointXYZI>::Ptr current_pc_ptr(new pcl::PointCloud<pcl::PointXYZI>);
    pcl::PointCloud<pcl::PointXYZI>::Ptr cliped_pc_ptr(new pcl::PointCloud<pcl::PointXYZI>);
 
    pcl::fromROSMsg(*in_cloud_ptr, *current_pc_ptr);
 
    clip_above(CLIP_COR, current_pc_ptr, cliped_pc_ptr);
    
    pcl::PointCloud<pcl::PointXYZI>::Ptr remove_close(new pcl::PointCloud<pcl::PointXYZI>);
 
    clip_xy(cliped_pc_ptr, remove_close);
 
    sensor_msgs::PointCloud2 cloud_msg;
    pcl::toROSMsg(*remove_close, cloud_msg);
    in_publisher.publish(cloud_msg);
}

  这个框架: 1.头文件.h class private:订阅发布话题,pointcb,其他点云处理函数的定义;public:PclTestCore(ros::NodeHandle &nh),~PclTestCore(),void spin()   2.core PclTestCore::PclTestCore(ros::NodeHandel &nh) {订阅发布话题具体的,ros::spin()} PclTestCore::~PclTestCore(){} void PclTestCore::spin(){} void PclTestCore::其他函数具体定义 void PclTestCore::point_cb()   3._nodeint main(int argc,char **argv) {节点初始化,实例化,core,return}   4)建立功能包,编译 功能包ninety(download baiduyun).编译 解决了找不到头文件的问题 写个launch文件 ninety.launch(mingtianxie) 或者直接  

roscore
rosbag play --clock test.bag
rosrun ninety ninety_node
rosrun rviz rviz
fixed_frame velodyne
add pointcloud2 /cloud_msg

 
在这里插入图片描述


开心洋葱 , 版权所有丨如未注明 , 均为原创丨未经授权请勿修改 , 转载请注明pcl_ros框架
喜欢 (0)

您必须 登录 才能发表评论!

加载中……