简单的代码来创建和使用公共/私人密钥对
# coding=utf-8 from __future__ import division, absolute_import, print_function from base64 import b64encode from fractions import gcd from random import randrange from collections import namedtuple from math import log from binascii import hexlify, unhexlify import sys PY3 = sys.version_info[0] == 3 if PY3: binary_type = bytes range_func = range else: binary_type = str range_func = xrange def is_prime(n, k=30): # http://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test if n <= 3: return n == 2 or n == 3 neg_one = n - 1 # write n-1 as 2^s*d where d is odd s, d = 0, neg_one while not d & 1: s, d = s + 1, d >> 1 assert 2 ** s * d == neg_one and d & 1 for _ in range_func(k): a = randrange(2, neg_one) x = pow(a, d, n) if x in (1, neg_one): continue for _ in range_func(s - 1): x = x ** 2 % n if x == 1: return False if x == neg_one: break else: return False return True def randprime(n=10 ** 8): p = 1 while not is_prime(p): p = randrange(n) return p def multinv(modulus, value): """ Multiplicative inverse in a given modulus >>> multinv(191, 138) 18 >>> multinv(191, 38) 186 >>> multinv(120, 23) 47 """ # http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm x, lastx = 0, 1 a, b = modulus, value while b: a, q, b = b, a // b, a % b x, lastx = lastx - q * x, x result = (1 - lastx * modulus) // value if result < 0: result += modulus assert 0 <= result < modulus and value * result % modulus == 1 return result KeyPair = namedtuple('KeyPair', 'public private') Key = namedtuple('Key', 'exponent modulus') def keygen(n, public=None): """ Generate public and private keys from primes up to N. Optionally, specify the public key exponent (65537 is popular choice). >>> pubkey, privkey = keygen(2**64) >>> msg = 123456789012345 >>> coded = pow(msg, *pubkey) >>> plain = pow(coded, *privkey) >>> assert msg == plain """ # http://en.wikipedia.org/wiki/RSA prime1 = randprime(n) prime2 = randprime(n) composite = prime1 * prime2 totient = (prime1 - 1) * (prime2 - 1) if public is None: private = None while True: private = randrange(totient) if gcd(private, totient) == 1: break public = multinv(totient, private) else: private = multinv(totient, public) assert public * private % totient == gcd(public, totient) == gcd(private, totient) == 1 assert pow(pow(1234567, public, composite), private, composite) == 1234567 return KeyPair(Key(public, composite), Key(private, composite)) def encode(msg, pubkey, verbose=False): chunksize = int(log(pubkey.modulus, 256)) outchunk = chunksize + 1 outfmt = '%%0%dx' % (outchunk * 2,) bmsg = msg if isinstance(msg, binary_type) else msg.encode('utf-8') result = [] for start in range_func(0, len(bmsg), chunksize): chunk = bmsg[start:start + chunksize] chunk += b'\x00' * (chunksize - len(chunk)) plain = int(hexlify(chunk), 16) coded = pow(plain, *pubkey) bcoded = unhexlify((outfmt % coded).encode()) if verbose: print('Encode:', chunksize, chunk, plain, coded, bcoded) result.append(bcoded) return b''.join(result) def decode(bcipher, privkey, verbose=False): chunksize = int(log(privkey.modulus, 256)) outchunk = chunksize + 1 outfmt = '%%0%dx' % (chunksize * 2,) result = [] for start in range_func(0, len(bcipher), outchunk): bcoded = bcipher[start: start + outchunk] coded = int(hexlify(bcoded), 16) plain = pow(coded, *privkey) chunk = unhexlify((outfmt % plain).encode()) if verbose: print('Decode:', chunksize, chunk, plain, coded, bcoded) result.append(chunk) return b''.join(result).rstrip(b'\x00').decode('utf-8') def key_to_str(key): """ Convert `Key` to string representation >>> key_to_str(Key(50476910741469568741791652650587163073, 95419691922573224706255222482923256353)) '25f97fd801214cdc163796f8a43289c1:47c92a08bc374e96c7af66eb141d7a21' """ return ':'.join((('%%0%dx' % ((int(log(number, 256)) + 1) * 2)) % number) for number in key) def str_to_key(key_str): """ Convert string representation to `Key` (assuming valid input) >>> (str_to_key('25f97fd801214cdc163796f8a43289c1:47c92a08bc374e96c7af66eb141d7a21') == ... Key(exponent=50476910741469568741791652650587163073, modulus=95419691922573224706255222482923256353)) True """ return Key(*(int(number, 16) for number in key_str.split(':'))) def main(): import doctest print(doctest.testmod()) pubkey, privkey = keygen(2 ** 64) msg = u'the quick brown fox jumped over the lazy dog ® ⌀' h = encode(msg, pubkey, True) p = decode(h, privkey, True) print('-' * 20) print('message:', msg) print('encoded:', b64encode(h).decode()) print('decoded:', p) print('private key:', key_to_str(privkey)) print('public key:', key_to_str(pubkey)) if __name__ == '__main__': main()
Working RSA crypto functions with a rudimentary interface. Currently, it is good enough to generate valid key/pairs and demonstrate the algorithm in a way that makes it easy to run experiments and to learn how it works.
This is an early draft. Future updates will include:
saving and loading keys in a standard file format
more advanced encoder/decoder
stricter tests for allowable primes
preprocessor with compression/padding/salting
possible command-line interface