• 欢迎访问开心洋葱网站,在线教程,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站,欢迎加入开心洋葱 QQ群
  • 为方便开心洋葱网用户,开心洋葱官网已经开启复制功能!
  • 欢迎访问开心洋葱网站,手机也能访问哦~欢迎加入开心洋葱多维思维学习平台 QQ群
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏开心洋葱吧~~~~~~~~~~~~~!
  • 由于近期流量激增,小站的ECS没能经的起亲们的访问,本站依然没有盈利,如果各位看如果觉着文字不错,还请看官给小站打个赏~~~~~~~~~~~~~!

A*寻路算法C++简单实现

人工智能 一抹烟霞 1202次浏览 0个评论

搜索区域            A*寻路算法C++简单实现   如图所示简易地图, 其中绿色方块的是起点 (用 A 表示), 中间蓝色的是障碍物, 红色的方块 (用 B 表示) 是目的地. 为了可以用一个二维数组来表示地图, 我们将地图划分成一个个的小方块。   开始寻路  

  • 1.从起点A开始, 把它作为待处理的方格存入一个”开启列表”, 开启列表就是一个等待检查方格的列表.
  • 2.寻找起点A周围可以到达的方格, 将它们放入”开启列表”, 并设置它们的”父方格”为A.
  • 3.从”开启列表”中删除起点 A, 并将起点 A 加入”关闭列表”, “关闭列表”中存放的都是不需要再次检查的方格
A*寻路算法C++简单实现   图中浅绿色描边的方块表示已经加入 “开启列表” 等待检查. 淡蓝色描边的起点 A 表示已经放入 “关闭列表” , 它不需要再执行检查.
从 “开启列表” 中找出相对最适宜的方块, 通过公式 F=G+H 来计算.
F = G + H
 G 表示从起点 A 移动到网格上指定方格的移动耗费 (可沿斜方向移动).(耗费可根据地形、坡度、距离等设置,一般简化用距离) H 表示从指定的方格移动到终点 B 的预计耗费 (H 有很多计算方法, 本文代码使用简单的欧几里得距离计算方法).

 

我们假设横向移动一个格子的耗费为10, 为了便于计算, 沿斜方向移动一个格子耗费是14. 为了更直观的展示如何运算 FGH, 图中方块的左上角数字表示 F, 左下角表示 G, 右下角表示 H. 看看是否跟你心里想的结果一样?
从 “开启列表” 中选择 F 值最低的方格 C (绿色起始方块 A 右边的方块), 然后对它进行如下处理:
(如果C上方和下方都是障碍物的话会走入死胡同吗?不会,根据算法,这时候C会被直接放到关闭列表,没有发生任何节点的F更新和父节点更新)

 

  • 4.把它从 “开启列表” 中删除, 并放到 “关闭列表” 中.
  • 5.检查它所有相邻并且可以到达 (障碍物和 “关闭列表” 的方格都不考虑) 的方格. 如果这些方格还不在 “开启列表” 里的话, 将它们加入 “开启列表”, 计算这些方格的 G, H 和 F 值各是多少, 并设置它们的 “父方格” 为 C.
  • 6.如果某个相邻方格 D 已经在 “开启列表” 里了, 检查如果用新的路径 (就是经过C 的路径) 到达它的话, G值是否会更低一些, 如果新的G值更低, 那就把它的 “父方格” 改为目前选中的方格 C, 然后重新计算它的 F 值和 G 值 (H 值不需要重新计算, 因为对于每个方块, H 值是不变的). 如果新的 G 值比较高, 就说明经过 C 再到达 D 不是一个明智的选择, 因为它需要更远的路, 这时我们什么也不做.
                           
如图, 我们选中了 C 因为它的 F 值最小, 我们把它从 “开启列表” 中删除, 并把它加入 “关闭列表”. 它右边上下三个都是墙, 所以不考虑它们. 它左边是起始方块, 已经加入到 “关闭列表” 了, 也不考虑. 所以它周围的候选方块就只剩下 4 个. 让我们来看看 C 下面的那个格子, 它目前的 G 是14, 如果通过 C 到达它的话, G将会是 10 + 10, 这比 14 要大, 因此我们什么也不做.
然后我们继续从 “开启列表” 中找出 F 值最小的, 但我们发现 C 上面的和下面的同时为 54, 这时怎么办呢? 这时随便取哪一个都行, 比如我们选择了 C 下面的那个方块 D.

 

                        
D 右边已经右上方的都是墙, 所以不考虑, 但为什么右下角的没有被加进 “开启列表” 呢? 因为如果 C 下面的那块也不可以走, 想要到达 C 右下角的方块就需要从 “方块的角” 走了, 在程序中设置是否允许这样走. (图中的示例不允许这样走)

    A*寻路算法C++简单实现

就这样, 我们从 “开启列表” 找出 F 值最小的, 将它从 “开启列表” 中移掉, 添加到 “关闭列表”. 再继续找出它周围可以到达的方块, 如此循环下去…
那么什么时候停止呢? —— 当我们发现 “开始列表” 里出现了目标终点方块的时候, 说明路径已经被找到.

 

输出路径

 

   A*寻路算法C++简单实现

如上图所示, 除了起始方块, 每一个曾经或者现在还在 “开启列表” 里的方块, 它都有一个 “父方块”, 通过 “父方块” 可以索引到最初的 “起始方块”, 这就是路径.

  算法伪码  

把起始格添加到 "开启列表"  
do  
{  
       寻找开启列表中F值最低的格子, 我们称它为当前格.  
       把它切换到关闭列表.  
       对当前格相邻的8格中的每一个  
          if (它不可通过 || 已经在 "关闭列表" 中)  
          {  
                什么也不做.  
           }  
          if (它不在开启列表中)  
          {  
                把它添加进 "开启列表", 把当前格作为这一格的父节点, 计算这一格的 FGH  
          if (它已经在开启列表中)  
          {  
                if (用G值为参考检查新的路径是否更好, 更低的G值意味着更好的路径)  
                    {  
                            把这一格的父节点改成当前格, 并且重新计算这一格的 GF 值.  
                    }  
} while( 目标格已经在 "开启列表", 这时候路径被找到)  
如果开启列表已经空了, 说明路径不存在. 
   
最后从目标格开始, 沿着每一格的父节点移动直到回到起始格, 这就是路径.

 

C++实现代码

 

Astar.h

 

#pragma once 
/*
//A*算法对象类
*/ 
#include <vector> 
#include <list> 
   
const int kCost1=10; //直移一格消耗 
const int kCost2=14; //斜移一格消耗 
   
struct Point 
{ 
    int x,y; //点坐标,这里为了方便按照C++的数组来计算,x代表横排,y代表竖列 
    int F,G,H; //F=G+H 
    Point *parent; //parent的坐标,这里没有用指针,从而简化代码 
    Point(int _x,int _y):x(_x),y(_y),F(0),G(0),H(0),parent(NULL)  //变量初始化 
    { 
    } 
}; 
   
   
class Astar 
{ 
public: 
    void InitAstar(std::vector<std::vector<int>> &_maze); 
    std::list<Point *> GetPath(Point &startPoint,Point &endPoint,bool isIgnoreCorner); 
   
private: 
    Point *findPath(Point &startPoint,Point &endPoint,bool isIgnoreCorner); 
    std::vector<Point *> getSurroundPoints(const Point *point,bool isIgnoreCorner) const; 
    bool isCanreach(const Point *point,const Point *target,bool isIgnoreCorner) const; //判断某点是否可以用于下一步判断 
    Point *isInList(const std::list<Point *> &list,const Point *point) const; //判断开启/关闭列表中是否包含某点 
    Point *getLeastFpoint(); //从开启列表中返回F值最小的节点 
    //计算FGH值 
    int calcG(Point *temp_start,Point *point); 
    int calcH(Point *point,Point *end); 
    int calcF(Point *point); 
private: 
    std::vector<std::vector<int>> maze; 
    std::list<Point *> openList;  //开启列表 
    std::list<Point *> closeList; //关闭列表 
};

  Astar.cpp  

#include <math.h> 
#include "Astar.h" 
   
void Astar::InitAstar(std::vector<std::vector<int>> &_maze) 
{ 
    maze=_maze; 
} 
   
int Astar::calcG(Point *temp_start,Point *point) 
{ 
    int extraG=(abs(point->x-temp_start->x)+abs(point->y-temp_start->y))==1?kCost1:kCost2; 
    int parentG=point->parent==NULL?0:point->parent->G; //如果是初始节点,则其父节点是空 
    return parentG+extraG; 
} 
   
int Astar::calcH(Point *point,Point *end) 
{ 
    //用简单的欧几里得距离计算H,这个H的计算是关键,还有很多算法,没深入研究^_^ 
    return sqrt((double)(end->x-point->x)*(double)(end->x-point->x)+(double)(end->y-point->y)*(double)(end->y-point->y))*kCost1; 
} 
   
int Astar::calcF(Point *point) 
{ 
    return point->G+point->H; 
} 
   
Point *Astar::getLeastFpoint() 
{ 
    if(!openList.empty()) 
    { 
        auto resPoint=openList.front(); 
        for(auto &point:openList) 
            if(point->F<resPoint->F) 
                resPoint=point; 
        return resPoint; 
    } 
    return NULL; 
} 
   
Point *Astar::findPath(Point &startPoint,Point &endPoint,bool isIgnoreCorner) 
{ 
    openList.push_back(new Point(startPoint.x,startPoint.y)); //置入起点,拷贝开辟一个节点,内外隔离 
    while(!openList.empty()) 
    { 
        auto curPoint=getLeastFpoint(); //找到F值最小的点 
        openList.remove(curPoint); //从开启列表中删除 
        closeList.push_back(curPoint); //放到关闭列表 
        //1,找到当前周围八个格中可以通过的格子 
        auto surroundPoints=getSurroundPoints(curPoint,isIgnoreCorner); 
        for(auto &target:surroundPoints) 
        { 
            //2,对某一个格子,如果它不在开启列表中,加入到开启列表,设置当前格为其父节点,计算F G H 
            if(!isInList(openList,target)) 
            { 
                target->parent=curPoint; 
   
                target->G=calcG(curPoint,target); 
                target->H=calcH(target,&endPoint); 
                target->F=calcF(target); 
   
                openList.push_back(target); 
            } 
            //3,对某一个格子,它在开启列表中,计算G值, 如果比原来的大, 就什么都不做, 否则设置它的父节点为当前点,并更新G和F 
            else 
            { 
                int tempG=calcG(curPoint,target); 
                if(tempG<target->G) 
                { 
                    target->parent=curPoint; 
   
                    target->G=tempG; 
                    target->F=calcF(target); 
                } 
            } 
            Point *resPoint=isInList(openList,&endPoint); 
            if(resPoint) 
                return resPoint; //返回列表里的节点指针,不要用原来传入的endpoint指针,因为发生了深拷贝 
        } 
    } 
   
    return NULL; 
} 
   
std::list<Point *> Astar::GetPath(Point &startPoint,Point &endPoint,bool isIgnoreCorner) 
{ 
    Point *result=findPath(startPoint,endPoint,isIgnoreCorner); 
    std::list<Point *> path; 
    //返回路径,如果没找到路径,返回空链表 
    while(result) 
    { 
        path.push_front(result); 
        result=result->parent; 
    } 
    return path; 
} 
   
Point *Astar::isInList(const std::list<Point *> &list,const Point *point) const 
{ 
    //判断某个节点是否在列表中,这里不能比较指针,因为每次加入列表是新开辟的节点,只能比较坐标 
    for(auto p:list) 
        if(p->x==point->x&&p->y==point->y) 
            return p; 
    return NULL; 
} 
   
bool Astar::isCanreach(const Point *point,const Point *target,bool isIgnoreCorner) const 
{ 
    if(target->x<0||target->x>maze.size()-1 
        ||target->y<0&&target->y>maze[0].size()-1 
        ||maze[target->x][target->y]==1 
        ||target->x==point->x&&target->y==point->y 
        ||isInList(closeList,target)) //如果点与当前节点重合、超出地图、是障碍物、或者在关闭列表中,返回false 
        return false; 
    else 
    { 
        if(abs(point->x-target->x)+abs(point->y-target->y)==1) //非斜角可以 
            return true; 
        else 
        { 
            //斜对角要判断是否绊住 
            if(maze[point->x][target->y]==0&&maze[target->x][point->y]==0) 
                return true; 
            else 
                return isIgnoreCorner; 
        } 
    } 
} 
   
std::vector<Point *> Astar::getSurroundPoints(const Point *point,bool isIgnoreCorner) const 
{ 
    std::vector<Point *> surroundPoints; 
   
    for(int x=point->x-1;x<=point->x+1;x++) 
        for(int y=point->y-1;y<=point->y+1;y++) 
            if(isCanreach(point,new Point(x,y),isIgnoreCorner)) 
                surroundPoints.push_back(new Point(x,y)); 
       
    return surroundPoints; 
} 

  main.cpp  

#include <iostream> 
#include "Astar.h" 
using namespace std; 
   
int main() 
{ 
    //初始化地图,用二维矩阵代表地图,1表示障碍物,0表示可通 
    vector<vector<int>> maze={ 
        {1,1,1,1,1,1,1,1,1,1,1,1}, 
        {1,0,0,1,1,0,1,0,0,0,0,1}, 
        {1,0,0,1,1,0,0,0,0,0,0,1}, 
        {1,0,0,0,0,0,1,0,0,1,1,1}, 
        {1,1,1,0,0,0,0,0,1,1,0,1}, 
        {1,1,0,1,0,0,0,0,0,0,0,1}, 
        {1,0,1,0,0,0,0,1,0,0,0,1}, 
        {1,1,1,1,1,1,1,1,1,1,1,1} 
    }; 
    Astar astar; 
    astar.InitAstar(maze); 
   
    //设置起始和结束点 
    Point start(1,1); 
    Point end(6,10); 
    //A*算法找寻路径 
    list<Point *> path=astar.GetPath(start,end,false); 
    //打印 
    for(auto &p:path) 
        cout<<'('<<p->x<<','<<p->y<<')'<<endl; 
   
    system("pause"); 
    return 0; 

 


开心洋葱 , 版权所有丨如未注明 , 均为原创丨未经授权请勿修改 , 转载请注明A*寻路算法C++简单实现
喜欢 (0)

您必须 登录 才能发表评论!

加载中……