Gauss-Legendre integration in Python
''' I = gaussQuad2(f,xc,yc,m). Gauss-Legendre integration of f(x,y) over a quadrilateral using integration order m. {xc},{yc} are the corner coordinates of the quadrilateral. ''' from gaussNodes import * from numpy import zeros,dot def gaussQuad2(f,x,y,m): def jac(x,y,s,t): J = zeros((2,2)) J[0,0] = -(1.0 - t)*x[0] + (1.0 - t)*x[1] \ + (1.0 + t)*x[2] - (1.0 + t)*x[3] J[0,1] = -(1.0 - t)*y[0] + (1.0 - t)*y[1] \ + (1.0 + t)*y[2] - (1.0 + t)*y[3] J[1,0] = -(1.0 - s)*x[0] - (1.0 + s)*x[1] \ + (1.0 + s)*x[2] + (1.0 - s)*x[3] J[1,1] = -(1.0 - s)*y[0] - (1.0 + s)*y[1] \ + (1.0 + s)*y[2] + (1.0 - s)*y[3] return (J[0,0]*J[1,1] - J[0,1]*J[1,0])/16.0 def map(x,y,s,t): N = zeros(4) N[0] = (1.0 - s)*(1.0 - t)/4.0 N[1] = (1.0 + s)*(1.0 - t)/4.0 N[2] = (1.0 + s)*(1.0 + t)/4.0 N[3] = (1.0 - s)*(1.0 + t)/4.0 xCoord = dot(N,x) yCoord = dot(N,y) return xCoord,yCoord s,A = gaussNodes(m) sum = 0.0 for i in range(m): for j in range(m): xCoord,yCoord = map(x,y,s[i],s[j]) sum = sum + A[i]*A[j]*jac(x,y,s[i],s[j]) \ *f(xCoord,yCoord) return sum