﻿ Inverse power method applied to a tridiagonal matrix in Python_python_开心洋葱网
• 欢迎访问开心洋葱网站，在线教程，推荐使用最新版火狐浏览器和Chrome浏览器访问本网站，欢迎加入开心洋葱` QQ群`
• 为方便开心洋葱网用户，开心洋葱官网已经开启复制功能！
• 欢迎访问开心洋葱网站，手机也能访问哦~欢迎加入开心洋葱多维思维学习平台` QQ群`
• 如果您觉得本站非常有看点，那么赶紧使用Ctrl+D 收藏开心洋葱吧~~~~~~~~~~~~~！
• 由于近期流量激增，小站的ECS没能经的起亲们的访问，本站依然没有盈利，如果各位看如果觉着文字不错，还请看官给小站打个赏~~~~~~~~~~~~~！

# Inverse power method applied to a tridiagonal matrix in Python

1814次浏览 手机上查看

Inverse power method applied to a tridiagonal matrix in Python

```''' lam,x = inversePower3(d,c,s,tol=1.0e-6).
Inverse power method applied to a tridiagonal matrix
[A] = [c\d\c]. Returns the eigenvalue closest to 's'
and the corresponding eigenvector.
'''
from numpy import dot,zeros
from LUdecomp3 import *
from math import sqrt
from random import random

def inversePower3(d,c,s,tol=1.0e-6):
n = len(d)
e = c.copy()
cc = c.copy()               # Save original [c]
dStar = d - s               # Form [A*] = [A] - s[I]
LUdecomp3(cc,dStar,e)       # Decompose [A*]
x = zeros(n)
for i in range(n):          # Seed [x] with random numbers
x[i] = random()
xMag = sqrt(dot(x,x))       # Normalize [x]
x =x/xMag
flag = 0
for i in range(30):         # Begin iterations
xOld = x.copy()         # Save current [x]
LUsolve3(cc,dStar,e,x)  # Solve [A*][x] = [xOld]
xMag = sqrt(dot(x,x))   # Normalize [x]
x = x/xMag
if dot(xOld,x) < 0.0:   # Detect change in sign of [x]
sign = -1.0
x = -x
else: sign = 1.0
if sqrt(dot(xOld - x,xOld - x)) < tol:
return s + sign/xMag,x
print 'Inverse power method did not converge'
```

[开心洋葱]  • 版权声明

本站的文章和资源来自互联网或者站长的原创，按照 CC BY -NC -SA 3.0 CN协议发布和共享，转载或引用本站文章应遵循相同协议。如果有侵犯版权的资源请尽快联系站长，我们会在24h内删除有争议的资源。
• 合作网站

• 友情链接

• 关于我们

一群热爱思考，热爱生活，有理想的新社会主义接班人的多维思维学习平台，天行健，君子以自强不息。地势坤，君子以厚德载物。
……