LU decomposition of symetric pentadiagonal matrix in Python
''' d,e,f = LUdecomp5(d,e,f). LU decomposition of symetric pentadiagonal matrix [f\e\d\e\f]. On output {d},{e} and {f} are the diagonals of the decomposed matrix. x = LUsolve5(d,e,f,b). Solves [f\e\d\e\f]{x} = {b}, where {d}, {e} and {f} are the vectors returned from LUdecomp5. ''' def LUdecomp5(d,e,f): n = len(d) for k in range(n-2): lam = e[k]/d[k] d[k+1] = d[k+1] - lam*e[k] e[k+1] = e[k+1] - lam*f[k] e[k] = lam lam = f[k]/d[k] d[k+2] = d[k+2] - lam*f[k] f[k] = lam lam = e[n-2]/d[n-2] d[n-1] = d[n-1] - lam*e[n-2] e[n-2] = lam return d,e,f def LUsolve5(d,e,f,b): n = len(d) b[1] = b[1] - e[0]*b[0] for k in range(2,n): b[k] = b[k] - e[k-1]*b[k-1] - f[k-2]*b[k-2] b[n-1] = b[n-1]/d[n-1] b[n-2] = b[n-2]/d[n-2] - e[n-2]*b[n-1] for k in range(n-3,-1,-1): b[k] = b[k]/d[k] - e[k]*b[k+1] - f[k]*b[k+2] return b