注册 登录
  • 欢迎访问开心洋葱网站,在线教程,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站,欢迎加入开心洋葱 QQ群
  • 为方便开心洋葱网用户,开心洋葱官网已经开启复制功能!
  • 欢迎访问开心洋葱网站,手机也能访问哦~欢迎加入开心洋葱多维思维学习平台 QQ群
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏开心洋葱吧~~~~~~~~~~~~~!
  • 由于近期流量激增,小站的ECS没能经的起亲们的访问,本站依然没有盈利,如果各位看如果觉着文字不错,还请看官给小站打个赏~~~~~~~~~~~~~!

python中使用牛顿迭代法

python 水墨上仙 1928次浏览 已收录 手机上查看

Example of Newton-Raphson method with bisection in Python

''' root = newtonRaphson(f,df,a,b,tol=1.0e-9).
    Finds a root of f(x) = 0 by combining the Newton-Raphson
    method with bisection. The root must be bracketed in (a,b).
    Calls user-supplied functions f(x) and its derivative df(x).   
'''    
def newtonRaphson(f,df,a,b,tol=1.0e-9):
    import error
    fa = f(a)
    if fa == 0.0: return a
    fb = f(b)
    if fb == 0.0: return b
    if fa*fb > 0.0: error.err('Root is not bracketed')
    x = 0.5*(a + b)                    
    for i in range(30):
        fx = f(x)
        if abs(fx) < tol: return x
      # Tighten the brackets on the root 
        if fa*fx < 0.0:
            b = x  
        else:                  
            a = x
      # Try a Newton-Raphson step    
        dfx = df(x)
      # If division by zero, push x out of bounds
        try: dx = -fx/dfx
        except ZeroDivisionError: dx = b - a
        x = x + dx
      # If the result is outside the brackets, use bisection  
        if (b - x)*(x - a) < 0.0:  
            dx = 0.5*(b - a)                      
            x = a + dx
      # Check for convergence     
        if abs(dx) < tol*max(abs(b),1.0): return x
    print 'Too many iterations in Newton-Raphson'


开心洋葱 , 版权所有丨如未注明 , 均为原创丨未经授权请勿修改 , 转载请注明python中使用牛顿迭代法
喜欢 (0)
[开心洋葱]
分享 (0)
关于作者:
水墨上仙
……
加载中……