• 欢迎访问开心洋葱网站,在线教程,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站,欢迎加入开心洋葱 QQ群
  • 为方便开心洋葱网用户,开心洋葱官网已经开启复制功能!
  • 欢迎访问开心洋葱网站,手机也能访问哦~欢迎加入开心洋葱多维思维学习平台 QQ群
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏开心洋葱吧~~~~~~~~~~~~~!
  • 由于近期流量激增,小站的ECS没能经的起亲们的访问,本站依然没有盈利,如果各位看如果觉着文字不错,还请看官给小站打个赏~~~~~~~~~~~~~!

Spark SQL如何选择join策略

其他 大数据学习与分享 3085次浏览 0个评论

前言

众所周知,Catalyst Optimizer是Spark SQL的核心,它主要负责将SQL语句转换成最终的物理执行计划,在一定程度上决定了SQL执行的性能。

Catalyst在由Optimized Logical Plan生成Physical Plan的过程中,会根据:

abstract class SparkStrategies extends QueryPlanner[SparkPlan]

 

中的JoinSelection通过一些规则按照顺序进行模式匹配,从而确定join的最终执行策略,并且策略的选择会按照执行效率由高到低的优先级排列。

在了解join策略选择之前,首先看几个先决条件:

1. build table的选择

Hash Join的第一步就是根据两表之中较小的那一个构建哈希表,这个小表就叫做build table,大表则称为probe table,因为需要拿小表形成的哈希表来”探测”它。源码如下:

/* 左表作为build table的条件,join类型需满足:
   1. InnerLike:实现目前包括inner join和cross join
   2. RightOuter:right outer join
*/      
private def canBuildLeft(joinType: JoinType): Boolean = joinType match {
  case _: InnerLike | RightOuter => true
  case _ => false
}

/* 右表作为build table的条件,join类型需满足(第1种是在业务开发中写的SQL主要适配的):
   1. InnerLike、LeftOuter(left outer join)、LeftSemi(left semi join)、LeftAnti(left anti join)
   2. ExistenceJoin:only used in the end of optimizer and physical plans, we will not generate SQL for this join type
*/
private def canBuildRight(joinType: JoinType): Boolean = joinType match {
  case _: InnerLike | LeftOuter | LeftSemi | LeftAnti | _: ExistenceJoin => true
  case _ => false
}

 


2. 满足什么条件的表才能被广播

如果一个表的大小小于或等于参数spark.sql.autoBroadcastJoinThreshold(默认10M)配置的值,那么就可以广播该表。源码如下:

private def canBroadcastBySizes(joinType: JoinType, left: LogicalPlan, right: LogicalPlan)
  : Boolean = {
  val buildLeft = canBuildLeft(joinType) && canBroadcast(left)
  val buildRight = canBuildRight(joinType) && canBroadcast(right)
  buildLeft || buildRight
}

private def canBroadcast(plan: LogicalPlan): Boolean = {
  plan.stats.sizeInBytes >= 0 && plan.stats.sizeInBytes <= conf.autoBroadcastJoinThreshold
}

private def broadcastSideBySizes(joinType: JoinType, left: LogicalPlan, right: LogicalPlan)
  : BuildSide = {
  val buildLeft = canBuildLeft(joinType) && canBroadcast(left)
  val buildRight = canBuildRight(joinType) && canBroadcast(right)
  
  // 最终会调用broadcastSide
  broadcastSide(buildLeft, buildRight, left, right)
}

 


除了通过上述表的大小满足一定条件之外,我们也可以通过直接在Spark SQL中显示使用hint方式(/*+ BROADCAST(small_table) */),直接指定要广播的表,源码如下:

private def canBroadcastByHints(joinType: JoinType, left: LogicalPlan, right: LogicalPlan)
  : Boolean = {
  val buildLeft = canBuildLeft(joinType) && left.stats.hints.broadcast
  val buildRight = canBuildRight(joinType) && right.stats.hints.broadcast
  buildLeft || buildRight
}

private def broadcastSideByHints(joinType: JoinType, left: LogicalPlan, right: LogicalPlan)
  : BuildSide = {
  val buildLeft = canBuildLeft(joinType) && left.stats.hints.broadcast
  val buildRight = canBuildRight(joinType) && right.stats.hints.broadcast
  
  // 最终会调用broadcastSide
  broadcastSide(buildLeft, buildRight, left, right)
}

 


无论是通过表大小进行广播还是根据是否指定hint进行表广播,最终都会调用broadcastSide,来决定应该广播哪个表:

private def broadcastSide(
     canBuildLeft: Boolean,
     canBuildRight: Boolean,
     left: LogicalPlan,
     right: LogicalPlan): BuildSide = {

   def smallerSide =
     if (right.stats.sizeInBytes <= left.stats.sizeInBytes) BuildRight else BuildLeft

  if (canBuildRight && canBuildLeft) {
    // 如果左表和右表都能作为build table,则将根据表的统计信息,确定physical size较小的表作为build table(即使两个表都被指定了hint)
    smallerSide
  } else if (canBuildRight) {
     // 上述条件不满足,优先判断右表是否满足build条件,满足则广播右表。否则,接着判断左表是否满足build条件
    BuildRight
  } else if (canBuildLeft) {
    BuildLeft
  } else {
    // 如果左表和右表都不能作为build table,则将根据表的统计信息,确定physical size较小的表作为build table。目前主要用于broadcast nested loop join
    smallerSide
  }
}

 


从上述源码可知,即使用户指定了广播hint,实际执行时,不一定按照hint的表进行广播。

3. 是否可构造本地HashMap

应用于Shuffle Hash Join中,源码如下:

// 逻辑计划的单个分区足够小到构建一个hash表
// 注意:要求分区数是固定的。如果分区数是动态的,还需满足其他条件
private def canBuildLocalHashMap(plan: LogicalPlan): Boolean = {
  // 逻辑计划的physical size小于spark.sql.autoBroadcastJoinThreshold * spark.sql.shuffle.partitions(默认200)时,即可构造本地HashMap
  plan.stats.sizeInBytes < conf.autoBroadcastJoinThreshold * conf.numShufflePartitions
}

 

我们知道,SparkSQL目前主要实现了3种join:Broadcast Hash Join、ShuffledHashJoin、Sort Merge Join。那么Catalyst在处理SQL语句时,是依据什么规则进行join策略选择的呢?

1. Broadcast Hash Join

主要根据hint和size进行判断是否满足条件。

// broadcast hints were specified
case ExtractEquiJoinKeys(joinType, leftKeys, rightKeys, condition, left, right)
   if canBroadcastByHints(joinType, left, right) =>
   val buildSide = broadcastSideByHints(joinType, left, right)
   Seq(joins.BroadcastHashJoinExec(
     leftKeys, rightKeys, joinType, buildSide, condition, planLater(left), planLater(right)))

// broadcast hints were not specified, so need to infer it from size and configuration.
case ExtractEquiJoinKeys(joinType, leftKeys, rightKeys, condition, left, right)
   if canBroadcastBySizes(joinType, left, right) =>
   val buildSide = broadcastSideBySizes(joinType, left, right)
   Seq(joins.BroadcastHashJoinExec(
     leftKeys, rightKeys, joinType, buildSide, condition, planLater(left), planLater(right)))

 


2. Shuffle Hash Join

选择Shuffle Hash Join需要同时满足以下条件:   

  1. spark.sql.join.preferSortMergeJoin为false,即Shuffle Hash Join优先于Sort Merge Join

  2. 右表或左表是否能够作为build table  

  3. 是否能构建本地HashMap  

  4. 以右表为例,它的逻辑计划大小要远小于左表大小(默认3倍)

上述条件优先检查右表。

case ExtractEquiJoinKeys(joinType, leftKeys, rightKeys, condition, left, right)
    if !conf.preferSortMergeJoin && canBuildRight(joinType) && canBuildLocalHashMap(right)
      && muchSmaller(right, left) ||
      !RowOrdering.isOrderable(leftKeys) =>
   Seq(joins.ShuffledHashJoinExec(
     leftKeys, rightKeys, joinType, BuildRight, condition, planLater(left), planLater(right)))

case ExtractEquiJoinKeys(joinType, leftKeys, rightKeys, condition, left, right)
     if !conf.preferSortMergeJoin && canBuildLeft(joinType) && uildLocalHashMap(left)
       && muchSmaller(left, right) ||
       !RowOrdering.isOrderable(leftKeys) =>
    Seq(joins.ShuffledHashJoinExec(
      leftKeys, rightKeys, joinType, BuildLeft, condition, planLater(left), planLater(right)))
      
private def muchSmaller(a: LogicalPlan, b: LogicalPlan): Boolean = {
  a.stats.sizeInBytes * 3 <= b.stats.sizeInBytes
}

 


如果不满足上述条件,但是如果参与join的表的key无法被排序,即无法使用Sort Merge Join,最终也会选择Shuffle Hash Join。

!RowOrdering.isOrderable(leftKeys)

def isOrderable(exprs: Seq[Expression]): Boolean = exprs.forall(e => isOrderable(e.dataType))

 

3. Sort Merge Join

如果上面两种join策略(Broadcast Hash Join和Shuffle Hash Join)都不符合条件,并且参与join的key是可排序的,就会选择Sort Merge Join。

case ExtractEquiJoinKeys(joinType, leftKeys, rightKeys, condition, left, right)
   if RowOrdering.isOrderable(leftKeys) =>
   joins.SortMergeJoinExec(
     leftKeys, rightKeys, joinType, condition, planLater(left), planLater(right)) :: Nil

 

4. Without joining keys

Broadcast Hash Join、Shuffle Hash Join和Sort Merge Join都属于经典的ExtractEquiJoinKeys(等值连接条件)。

对于非ExtractEquiJoinKeys,则会优先检查表是否可以被广播(hint或者size)。如果可以,则会使用BroadcastNestedLoopJoin(简称BNLJ),熟悉Nested Loop Join则不难理解BNLJ,主要却别在于BNLJ加上了广播表。

源码如下:

// Pick BroadcastNestedLoopJoin if one side could be broadcast
case j @ logical.Join(left, right, joinType, condition)
    if canBroadcastByHints(joinType, left, right) =>
  val buildSide = broadcastSideByHints(joinType, left, right)
  joins.BroadcastNestedLoopJoinExec(
    planLater(left), planLater(right), buildSide, joinType, condition) :: Nil

case j @ logical.Join(left, right, joinType, condition)
    if canBroadcastBySizes(joinType, left, right) =>
  val buildSide = broadcastSideBySizes(joinType, left, right)
  joins.BroadcastNestedLoopJoinExec(
    planLater(left), planLater(right), buildSide, joinType, condition) :: Nil

 

如果表不能被广播,又细分为两种情况: 

  1. 若join类型InnerLike(关于InnerLike上面已有介绍)对量表直接进行笛卡尔积处理若

  2. 上述情况都不满足,最终方案是选择两个表中physical size较小的表进行广播,join策略仍为BNLJ

源码如下:

// Pick CartesianProduct for InnerJoin
case logical.Join(left, right, _: InnerLike, condition) =>
  joins.CartesianProductExec(planLater(left), planLater(right), condition) :: Nil

case logical.Join(left, right, joinType, condition) =>
  val buildSide = broadcastSide(
    left.stats.hints.broadcast, right.stats.hints.broadcast, left, right)
  // This join could be very slow or OOM
  joins.BroadcastNestedLoopJoinExec(
    planLater(left), planLater(right), buildSide, joinType, condition) :: Nil

 


很显然,无论SQL语句最终的join策略选择笛卡尔积还是BNLJ,效率都很低,这一点在实际应用中,要尽量避免。

推荐文章:
SparkSQL与Hive metastore Parquet转换
通过Spark生成HFile,并以BulkLoad方式将数据导入到HBase
Spark SQL 小文件问题处理

关注微信公众号:大数据学习与分享,获取更对技术干货


开心洋葱 , 版权所有丨如未注明 , 均为原创丨未经授权请勿修改 , 转载请注明Spark SQL如何选择join策略
喜欢 (0)

您必须 登录 才能发表评论!

加载中……