最近公司有项目想在 k8s 集群中运行 GPU 任务,于是研究了一下。下面是部署的步骤。
1. 首先得有一个可以运行的 k8s 集群. 集群部署参考 kubeadm安装k8s
2. 准备 GPU 节点
2.1 安装驱动
curl -fsSL https://mirrors.aliyun.com/nvidia-cuda/ubuntu1804/x86_64/7fa2af80.pub | sudo apt-key add - echo "deb https://mirrors.aliyun.com/nvidia-cuda/ubuntu1804/x86_64/ ./" > /etc/apt/sources.list.d/cuda.list apt-get update apt-get install -y cuda-drivers-455 # 按需要安装对应的版本
2.2 安装 nvidia-docker2
<!– Note that you need to install the nvidia-docker2 package and not the nvidia-container-toolkit. This is because the new –gpus options hasn’t reached kubernetes yet –>
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
sudo apt-get update && sudo apt-get install -y nvidia-docker2
## /etc/docker/daemon.json 文件中加入以下内容, 使默认的运行时是 nvidia
{
    "default-runtime": "nvidia",
    "runtimes": {
        "nvidia": {
            "path": "/usr/bin/nvidia-container-runtime",
            "runtimeArgs": []
        }
    }
}
## 重启 docker
sudo systemctl restart docker
2.3 在 k8s 集群中安装 nvidia-device-plugin 使集群支持 GPU
kubectl create -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/v0.7.3/nvidia-device-plugin.yml # 如果因为网络问题访问不到该文件, 可在浏览器打开 https://github.com/NVIDIA/k8s-device-plugin/blob/v0.7.3/nvidia-device-plugin.yml ## 把文件内容拷贝到本地执行
    nvidia-device-plugin 做三件事情
- 
Expose the number of GPUs on each nodes of your cluster 
- 
Keep track of the health of your GPUs 
- 
Run GPU enabled containers in your Kubernetes cluster. 
之后把节点加入 k8s 集群
以上步骤成功完成之后, 运行以下命令能看到类似下面图片中的内容说明插件安装好了
kubectl get pod --all-namespaces | grep nvidia kubectl describe node 10.31.0.17

 
3. 运行 GPU Jobs
# cat nvidia-gpu-demo.yaml
apiVersion: v1
kind: Pod
metadata:
  name: gpu-pod
spec:
  containers:
    - name: cuda-container
      image: nvidia/cuda:9.0-devel
      resources:
        limits:
          nvidia.com/gpu: 2 # requesting 2 GPUs
    - name: digits-container
      image: nvidia/digits:6.0
      resources:
        limits:
          nvidia.com/gpu: 2 # requesting 2 GPUs
kubectl apply -f nvidia-gpu-demo.yaml kubectl exec -it xxx-76dd5bd849-hlmdr -- bash # nvidia-smi

以上就简单实现了 k8s 调度 GPU 任务。
如有遇到问题可在留言区讨论。




