• 欢迎访问开心洋葱网站,在线教程,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站,欢迎加入开心洋葱 QQ群
  • 为方便开心洋葱网用户,开心洋葱官网已经开启复制功能!
  • 欢迎访问开心洋葱网站,手机也能访问哦~欢迎加入开心洋葱多维思维学习平台 QQ群
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏开心洋葱吧~~~~~~~~~~~~~!
  • 由于近期流量激增,小站的ECS没能经的起亲们的访问,本站依然没有盈利,如果各位看如果觉着文字不错,还请看官给小站打个赏~~~~~~~~~~~~~!

P2P的原理和常见的实现方式

网络通信/流媒体 弦苦 1638次浏览 0个评论

P2P的原理和常见的实现方式

 

为了项目的后期IM应用,最近在研究libjingle,中间看了也收集了很多资料,感慨网上很多资料要么太过于纠结协议(如STUN、ICE等)实现细节,要么中间有很多纰漏。最后去伪存真,归纳总结了一下,希望对以后的同行有些许帮助。

如果有什么需要讨论或者指正的,欢迎留言或者邮件peakflys@gmail.com

 

一.P2P实现的原理

首先先介绍一些基本概念:

NAT(Network Address Translators),网络地址转换:网络地址转换是在IP地址日益缺乏的情况下产生的,它的主要目的就是为了能够地址重用NAT从历史发展上分为两大类,基本的NATNAPT(Network Address/Port Translator)。

最先提出的是基本的NAT(peakflys注:刚开始其实只是路由器上的一个功能模块),它的产生基于如下事实:一个私有网络(域)中的节点中只有很少的节点需要与外网连接(这是在上世纪90年代中期提出的)。那么这个子网中其实只有少数的节点需要全球唯一的IP地址,其他的节点的IP地址应该是可以重用的。

因此,基本的NAT实现的功能很简单,在子网内使用一个保留的IP子网段,这些IP对外是不可见的。子网内只有少数一些IP地址可以对应到真正全球唯一的IP地址。如果这些节点需要访问外部网络,那么基本NAT就负责将这个节点的子网内IP转化为一个全球唯一的IP然后发送出去。(基本的NAT会改变IP包中的原IP地址,但是不会改变IP包中的端口)。

关于基本的NAT可以参看RFC 1631

另外一种NAT叫做NAPT,从名称上我们也可以看得出,NAPT不但会改变经过这个NAT设备的IP数据报的IP地址,还会改变IP数据报的TCP/UDP端口。基本NAT的设备可能我们见的不多(基本已经淘汰了),NAPT才是我们真正需要关注的。看下图:

有一个私有网络10.*.*.*,Client A是其中的一台计算机,这个网络的网关(一个NAT设备)的外网IP是155.99.25.11(应该还有一个内网的IP地址,比如10.0.0.10)。如果Client A中的某个进程(这个进程创建了一个UDP Socket,这个Socket绑定1234端口)想访问外网主机18.181.0.31的1235端口,那么当数据包通过NAT(含有NAT模块的路由器设备)时会发生什么事情呢?

首先NAT会改变这个数据包的原IP地址,改为155.99.25.11。接着NAT会为这个传输创建一个SessionSession是一个抽象的概念,如果是TCP,也许Session是由一个SYN包开始,以一个FIN包结束。而UDP呢,以这个IP的这个端口的第一个UDP开始,结束呢,呵呵,也许是几分钟,也许是几小时,这要看具体的实现了)并且给这个Session分配一个端口,比如62000,然后改变这个数据包的源端口为62000。所以本来是(10.0.0.1:1234->18.181.0.31:1235)的数据包到了互联网上变为了(155.99.25.11:62000->18.181.0.31:1235)。

一旦NAT创建了一个Session后,NAT会记住62000端口对应的是10.0.0.1的1234端口,以后从18.181.0.31发送到62000端口的数据会被NAT自动的转发到10.0.0.1上。(注意:这里是说18.181.0.31发送到62000端口的数据会被转发,其他的IP发送到这个端口的数据将被NAT抛弃)这样Client A就与Server S1建立以了一个连接。

上面的是一些基础知识,下面的才是关键的部分了。

看看下面的情况:

接上面的例子,如果Client A的原来那个Socket(绑定了1234端口的那个UDP Socket)又接着向另外一个ServerS2发送了一个UDP包,那么这个UDP包在通过NAT时会怎么样呢?

这时可能会有两种情况发生,一种是NAT再次创建一个Session,并且再次为这个Session分配一个端口号(比如:62001)。另外一种是NAT再次创建一个Session,但是不会新分配一个端口号,而是用原来分配的端口号62000。前一种NAT叫做Symmetric NAT(对称NAT),后一种叫做Cone NAT(锥型NAT)。如果你的NAT刚好是第一种,那么很可能会有很多P2P软件失灵。(可以庆幸的是,现在绝大多数的NAT属于后者,即ConeNAT)

peakflys注:Cone NAT具体又分为3种:

(1)全圆锥(Full Cone): NAT把所有来自相同内部IP地址和端口的请求映射相同的外部IP地址和端口。任何一个外部主机均可通过该映射发送IP包到该内部主机。

(2)限制性圆锥(RestrictedCone): NAT把所有来自相同内部IP地址和端口的请求映射相同的外部IP地址和端口。但是,只有当内部主机给IP地址为X的外部主机发送IP包,该外部主机才能向该内部主机发送IP包。

(3)端口限制性圆锥(PortRestricted Cone):端口限制性圆锥与限制性圆锥类似,只是多了端口号的限制,即只有内部主机向IP地址为X,端口号为P的外部主机发送1个IP包,该外部主机才能够把源端口号为P的IP包发送给该内部主机。

好了,我们看到,通过NAT,子网内的计算机向外连结是很容易的(NAT相当于透明的,子网内的和外网的计算机不用知道NAT的情况)。

但是如果外部的计算机想访问子网内的计算机就比较困难了(而这正是P2P所需要的)。

那么,我们如果想从外部发送一个数据包给内网的计算机有什么办法呢?首先,我们必须在内网的NAT上打上一个“”(也就是前面我们说的在NAT上建立一个Session),这个洞不能由外部来打,只能由内网内的主机来打。而且这个洞是有方向的,比如从内部某台主机(比如:192.168.0.10)向外部的某个IP(比如:219.237.60.1)发送一个UDP包,那么就在这个内网的NAT设备上打了一个方向为219.237.60.1的“洞”(这就是被称为UDPHole Punching的技术),以后219.237.60.1就可以通过这个洞与内网的192.168.0.10联系了。(但是其他的IP不能利用这个洞)。

 

二.P2P的常用实现

1.普通的直连式P2P实现

    通过上面的理论,实现两个内网的主机通讯就差最后一步了:那就是鸡生蛋还是蛋生鸡的问题了,两边都无法主动发出连接请求,谁也不知道谁的公网地址,那我们如何来打这个洞呢?我们需要一个中间人来联系这两个内网主机。

现在我们来看看一个P2P软件的流程,以下图为例:

首先,Client A登录服务器,NATA为这次的Session分配了一个端口60000,那么ServerS收到的Client A的地址是202.187.45.3:60000,这就是Client A的外网地址了。同样,Client B登录Server S,NAT B给此次Session分配的端口是40000,那么Server S收到的B的地址是187.34.1.56:40000。

此时,Client A与Client B都可以与ServerS通信了。如果ClientA此时想直接发送信息给Client B,那么他可以从ServerS那儿获得B的公网地址187.34.1.56:40000,是不是Client A向这个地址发送信息Client B就能收到了呢?答案是不行,因为如果这样发送信息,NAT B会将这个信息丢弃(因为这样的信息是不请自来的,为了安全,大多数NAT都会执行丢弃动作)。现在我们需要的是在NAT B上打一个方向为202.187.45.3(即Client A的外网地址)的洞,那么Client A发送到187.34.1.56:40000的信息,ClientB就能收到了。这个打洞命令由谁来发呢?自然是ServerS。

总结一下这个过程:如果Client A想向Client B发送信息,那么Client A发送命令给ServerS,请求Server S命令Client B向Client A方向打洞。然后Client A就可以通过ClientB的外网地址与Client B通信了。

注意:以上过程只适合于Cone NAT的情况,如果是SymmetricNAT,那么当Client B向ClientA打洞的端口已经重新分配了,Client B将无法知道这个端口(如果SymmetricNAT的端口是顺序分配的,那么我们或许可以猜测这个端口号,可是由于可能导致失败的因素太多,这种情况下一般放弃P2P —peakflys)。

2.STUN方式的P2P实现

    STUNSessionTraversal Utilities for NAT)是RFC 3489规定的一种NAT穿透方式,它采用辅助的方法探测NAT的IP和端口。毫无疑问的,它对穿越早期的NAT起了巨大的作用,并且还将继续在NAT穿透中占有一席之地。

STUN的探测过程需要有一个公网IP的STUN server,在NAT后面的UAC(User Client Agent)必须和此server配合,互相之间发送若干个UDP数据包。UDP包中包含有UAC需要了解的信息,比如NAT外网IP/PORT等等。UAC通过是否得到这个UDP包和包中的数据判断自己的NAT类型。

假设有如下UAC(B),NAT(A),SERVER(C),UAC的IP为IPB,NAT的IP为IPA ,SERVER的 IP为IPC1、IPC2。请注意,服务器C有两个IP,后面你会理解为什么需要两个IP。

(1)NAT的探测过程

STEP1:B向C的IPC1port1端口发送一个UDP包。C收到这个包后,会把它收到包的源IP和port写到UDP包中,然后把此包通过IP1C和port1发还给B。这个IP和port也就是NAT的外网IP和port,也就是说你在STEP1中就得到了NAT的外网IP。

熟悉NAT工作原理的应该都知道,C返回给B的这个UDP包B一定收到。如果在你的应用中,向一个STUN服务器发送数据包后,你没有收到STUN的任何回应包,那只有两种可能:1、STUN服务器不存在,或者你弄错了port。2、你的NAT设备拒绝一切UDP包从外部向内部通过,如果排除防火墙限制规则,那么这样的NAT设备如果存在,那肯定是坏了。

当B收到此UDP后,把此UDP中的IP和自己的IP做比较,如果是一样的,就说明自己是在公网,下步NAT将去探测防火墙类型,就不多说了(下面有图)。如果不一样,说明NAT的存在,系统进行STEP2的操作。

STEP2:B向C的IPC1发送一个UDP包,请求C通过另外一个IPC2和PORT(不同于SETP1的IP1)向B返回一个UDP数据包(现在知道为什么C要有两个IP了吧,为了检测coneNAT的类型)。

我们来分析一下,如果B收到了这个数据包,那说明什么?说明NAT来者不拒,不对数据包进行任何过滤,这也就是STUN标准中的full cone NAT。遗憾的是,full cone nat太少了,这也意味着你能收到这个数据包的可能性不大。如果没收到,那么系统进行STEP3的操作。

STEP3:B向C的IPC2port2发送一个数据包,C收到数据包后,把它收到包的源IP和port写到UDP包中,然后通过自己的IPC2和port2把此包发还给B。

和step1一样,B肯定能收到这个回应UDP包。此包中的port是我们最关心的数据,下面我们来分析:

如果这个port和step1中的port一样,那么可以肯定这个NAT是个cone NAT,否则是对称NAT。道理很简单:根据对称NAT的规则,当目的地址的IP和port有任何一个改变,那么NAT都会重新分配一个port使用,而在step3中,和step1对应,我们改变了IP和port。因此,如果是对称NAT,那这两个port肯定是不同的。

如果在你的应用中,到此步的时候port是不同的,那就只能放弃P2P了,原因同上面实现中的一样。如果不同,那么只剩下了restrictcone和port restrict cone。系统用step4探测是哪一种。

STEP4:B向C的IP2的一个端口PD发送一个数据请求包,请求C用IP2和不同于PD的port返回一个数据包给B。

我们来分析结果:如果B收到了,那也就意味着只要IP相同,即使port不同,NAT也允许UDP包通过。显然这是restrict cone NAT。如果没收到,没别的好说,port restrict NAT

协议实现的算法运行图如下:

一旦路经到达红色节点时,UDP的沟通是没有可能性的(peakflys注:准备来说除了包被防火墙blocked之外,其他情况也是有可能建立P2P的,只是代价太大,一般放弃)。一旦通过黄色或是绿色的节点,就有连接的可能

最终通过STUN服务器得到自己的NAT类型和公网IP/Port,以后建立P2P时就非常容易了。

peakflys注:Libjingle正是通过ICE&STUN方式,建立的P2P连接。关于libjingle的介绍,待续……


参考资料

    1、STUN

    2、shootingstars

 


开心洋葱 , 版权所有丨如未注明 , 均为原创丨未经授权请勿修改 , 转载请注明P2P的原理和常见的实现方式
喜欢 (0)

您必须 登录 才能发表评论!

加载中……