目录
- DelayQueue概述
- 类图及重要字段
- Delayed接口
- Delayed元素案例
- 构造器
- void put(E e)
- E take()
- first = null 有什么用
- 总结
- 参考阅读
系列传送门:
- Java并发包源码学习系列:AbstractQueuedSynchronizer
- Java并发包源码学习系列:CLH同步队列及同步资源获取与释放
- Java并发包源码学习系列:AQS共享式与独占式获取与释放资源的区别
- Java并发包源码学习系列:ReentrantLock可重入独占锁详解
- Java并发包源码学习系列:ReentrantReadWriteLock读写锁解析
- Java并发包源码学习系列:详解Condition条件队列、signal和await
- Java并发包源码学习系列:挂起与唤醒线程LockSupport工具类
- Java并发包源码学习系列:JDK1.8的ConcurrentHashMap源码解析
- Java并发包源码学习系列:阻塞队列BlockingQueue及实现原理分析
- Java并发包源码学习系列:阻塞队列实现之ArrayBlockingQueue源码解析
- Java并发包源码学习系列:阻塞队列实现之LinkedBlockingQueue源码解析
- Java并发包源码学习系列:阻塞队列实现之PriorityBlockingQueue源码解析
DelayQueue概述
DelayQueue是一个支持延时获取元素的无界阻塞队列,使用PriorityQueue来存储元素。
队中的元素必须实现Delayed
接口【Delay接口又继承了Comparable,需要实现compareTo方法】,每个元素都需要指明过期时间,通过getDelay(unit)
获取元素剩余时间【剩余时间 = 到期时间 – 当前时间】,每次向优先队列中添加元素时根据compareTo方法作为排序规则。
当从队列获取元素时,只有过期的元素才会出队列。
使用场景: 缓存系统设计、定时任务调度等。
类图及重要字段
public class DelayQueue<E extends Delayed> extends AbstractQueue<E>
implements BlockingQueue<E> {
// 独占锁实现同步
private final transient ReentrantLock lock = new ReentrantLock();
// 优先队列存放数据
private final PriorityQueue<E> q = new PriorityQueue<E>();
/**
* 基于Leader-Follower模式的变体,用于尽量减少不必要的线程等待
*/
private Thread leader = null;
/**
* 与lock对应的条件变量
*/
private final Condition available = lock.newCondition();
}
- 使用ReentrantLock独占锁实现线程同步,使用Condition实现等待通知机制。
- 基于Leader-Follower模式的变体,减少不必要的线程等待。
- 内部使用PriorityQueue优先级队列存储元素,且队列中元素必须实现Delayed接口。
Delayed接口
队中的元素必须实现Delayed
接口【Delay接口又继承了Comparable,需要实现compareTo方法】,每个元素都需要指明过期时间,通过getDelay(unit)
获取元素剩余时间【剩余时间 = 到期时间 – 当前时间】。
每次向优先队列中添加元素时根据compareTo方法作为排序规则,当然我们约定一下,默认q.peek()出来的就是最先过期的元素。
public interface Delayed extends Comparable<Delayed> {
// 返回剩余时间
long getDelay(TimeUnit unit);
}
public interface Comparable<T> {
// 定义比较方法
public int compareTo(T o);
}
Delayed元素案例
学习了Delayed接口之后,我们看一个实际的案例,加深印象,源于:《Java并发编程之美》。
static class DelayedElement implements Delayed {
private final long delayTime; // 延迟时间
private final long expire; // 到期时间
private final String taskName; // 任务名称
public DelayedElement (long delayTime, String taskName) {
this.delayTime = delayTime;
this.taskName = taskName;
expire = now() + delayTime;
}
final long now () {
return System.currentTimeMillis();
}
// 剩余时间 = 到期时间 - 当前时间
@Override
public long getDelay (TimeUnit unit) {
return unit.convert(expire - now(), TimeUnit.MILLISECONDS);
}
@Override
public int compareTo (Delayed o) {
return (int) (getDelay(TimeUnit.MILLISECONDS) - o.getDelay(TimeUnit.MILLISECONDS));
}
@Override
public String toString () {
final StringBuilder res = new StringBuilder("DelayedElement [ ");
res.append("delay = ").append(delayTime);
res.append(", expire = ").append(expire);
res.append(", taskName = '").append(taskName).append('\'');
res.append(" ] ");
return res.toString();
}
}
public static void main (String[] args) {
// 创建delayQueue队列
DelayQueue<DelayedElement> delayQueue = new DelayQueue<>();
// 创建延迟任务
Random random = new Random();
for (int i = 0; i < 10; i++) {
DelayedElement element = new DelayedElement(random.nextInt(500), "task: " + i);
delayQueue.offer(element);
}
// 依次取出任务并打印
DelayedElement ele = null;
try {
for (; ; ) {
while ((ele = delayQueue.take()) != null) {
System.out.println(ele);
}
}
} catch (InterruptedException ex) {
ex.printStackTrace();
}
}
// 打印结果
DelayedElement [ delay = 2, expire = 1611995426061, taskName = 'task: 4' ]
DelayedElement [ delay = 52, expire = 1611995426111, taskName = 'task: 2' ]
DelayedElement [ delay = 80, expire = 1611995426139, taskName = 'task: 5' ]
DelayedElement [ delay = 132, expire = 1611995426191, taskName = 'task: 0' ]
DelayedElement [ delay = 174, expire = 1611995426233, taskName = 'task: 9' ]
DelayedElement [ delay = 175, expire = 1611995426234, taskName = 'task: 7' ]
DelayedElement [ delay = 326, expire = 1611995426385, taskName = 'task: 3' ]
DelayedElement [ delay = 447, expire = 1611995426506, taskName = 'task: 8' ]
DelayedElement [ delay = 452, expire = 1611995426511, taskName = 'task: 1' ]
DelayedElement [ delay = 486, expire = 1611995426545, taskName = 'task: 6' ]
- 实现了compareTo方法,定义比较规则为越早过期的排在队头。
- 实现了getDelay方法,计算公式为:剩余时间 = 到期时间 – 当前时间。
构造器
DelayQueue构造器相比于前几个,就显得非常easy了。
public DelayQueue() {}
public DelayQueue(Collection<? extends E> c) {
this.addAll(c);
}
void put(E e)
因为DelayQueue是无界队列,不会因为边界问题产生阻塞,因此put操作和offer操作是一样的。
public void put(E e) {
offer(e);
}
public boolean offer(E e) {
// 获取独占锁
final ReentrantLock lock = this.lock;
lock.lock();
try {
// 加入优先队列里
q.offer(e);
// 判断堆顶元素是不是刚刚插入的元素
// 如果判断为true,说明当前这个元素是将最先过期
if (q.peek() == e) {
// 重置leader线程为null
leader = null;
// 激活available变量条件队列中的一个线程
available.signal();
}
return true;
} finally {
lock.unlock();
}
}
E take()
take方法将会获取并移除队列里面延迟时间过期的元素 ,如果队列里面没有过期元素则陷入等待。
public E take() throws InterruptedException {
// 获取独占锁
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
for (;;) {
// 瞅一瞅谁最快过期
E first = q.peek();
// 队列为空,则将当前线程置入available的条件队列中,直到里面有元素
if (first == null)
available.await();
else {
// 看下还有多久过期
long delay = first.getDelay(NANOSECONDS);
// 哇,已经过期了,就移除它并返回
if (delay <= 0)
return q.poll();
first = null; // don't retain ref while waiting
// leader不为null表示其他线程也在执行take
// 则将当前线程置入available的条件队列中
if (leader != null)
available.await();
else {
// 如果leader为null,则选择当前线程作为leader线程
Thread thisThread = Thread.currentThread();
leader = thisThread;
try {
// 等待delay时间,时间到之后,会出条件队列,继续竞争锁
available.awaitNanos(delay);
} finally {
if (leader == thisThread)
leader = null;
}
}
}
}
} finally {
if (leader == null && q.peek() != null)
available.signal();
lock.unlock();
}
}
first = null 有什么用
如果不设置first = null
,将会引起内存泄露。
- 线程A到达,队首元素没有到期,设置leader = 线程A,并且执行
available.awaitNanos(delay);
等待元素过期。- 这时线程B来了,因为leader != null,则会
available.await();
阻塞,线程C、D、E同理。- 线程A阻塞完毕了,再次循环,获取列首元素成功,出列。
这个时候列首元素应该会被回收掉,但是问题是它还被线程B、线程C持有着,所以不会回收,如果线程增多,且队首元素无限期的不能回收,就会造成内存泄漏。
总结
DelayQueue是一个支持延时获取元素的无界阻塞队列,使用PriorityQueue来存储元素。
队中的元素必须实现Delayed
接口【Delay接口又继承了Comparable,需要实现compareTo方法】,每个元素都需要指明过期时间,通过getDelay(unit)
获取元素剩余时间【剩余时间 = 到期时间 – 当前时间】,每次向优先队列中添加元素时根据compareTo方法作为排序规则。
基于Leader-Follower模式使用leader变量,减少不必要的线程等待。
DelayQueue是无界队列,因此插入操作是非阻塞的。但是take操作从队列获取元素时,是阻塞的,阻塞规则为:
- 当一个线程调用队列的take方法,如果队列为空,则将会调用
available.await()
陷入阻塞。 - 如果队列不为空,则查看队列的队首元素是否过期,根据getDelay的返回值是否小于0判断,如果过期则返回该元素。
- 如果队首元素未过期,则判断当前线程是否为leader线程,如果不是,表明有其他线程在执行take操作,就调用
available.await()
陷入阻塞。 - 如果没有其他线程在执行take,就将当前线程设置为leader,并等待队首元素过期,
available.awaitNanos(delay)
。 - leader线程退出take之后,将会调用
available.signal()
唤醒一个follower线程,接着回到开始那步。
参考阅读
-
《Java并发编程的艺术》
-
《Java并发编程之美》
-
【死磕Java并发】—–J.U.C之阻塞队列:DelayQueue