.
目录
前言
什么是CAS机制
CAS的缺点:
ABA 问题回顾
ABA问题的解决办法
其他问题
1. 循环时间长开销大
2. 只能保证一个共享变量的原子操作
CAS 的应用
前言
什么是悲观锁-synchronized、乐观锁-CAS实现?
比较和交换(Conmpare And Swap)是用于实现多线程同步的原子指令。 它将内存位置的内容与给定值进行比较,只有在相同的情况下,将该内存位置的内容修改为新的给定值。 这是作为单个原子操作完成的。 原子性保证新值基于最新信息计算; 如果该值在同一时间被另一个线程更新,则写入将失败。 操作结果必须说明是否进行替换; 这可以通过一个简单的布尔响应(这个变体通常称为比较和设置),或通过返回从内存位置读取的值来完成。
- synchronized是悲观锁,这种线程一旦得到锁,其他需要锁的线程就挂起的情况就是悲观锁。
- CAS操作的就是乐观锁,每次不加锁而是假设没有冲突而去完成某项操作,如果因为冲突失败就重试,直到成功为止。
在进入正题之前,我们先理解下下面的代码:
private static int count = 0;
public static void main(String[] args) {
for (int i = 0; i < 2; i++) {
new Thread(new Runnable() {
@Override
public void run() {
try {
Thread.sleep(10);
} catch (Exception e) {
e.printStackTrace();
}
//每个线程让count自增100次
for (int i = 0; i < 100; i++) {
count++;
}
}
}).start();
}
try{
Thread.sleep(2000);
}catch (Exception e){
e.printStackTrace();
}
System.out.println(count);
}
请问cout的输出值是否为200?答案是否定的,因为这个程序是线程不安全的,所以造成的结果count值可能小于200;
那么如何改造成线程安全的呢,其实我们可以使用上Synchronized
同步锁,我们只需要在count++的位置添加同步锁,代码如下:
private static int count = 0;
public static void main(String[] args) {
for (int i = 0; i < 2; i++) {
new Thread(new Runnable() {
@Override
public void run() {
try {
Thread.sleep(10);
} catch (Exception e) {
e.printStackTrace();
}
//每个线程让count自增100次
for (int i = 0; i < 100; i++) {
synchronized (ThreadCas.class){
count++;
}
}
}
}).start();
}
try{
Thread.sleep(2000);
}catch (Exception e){
e.printStackTrace();
}
System.out.println(count);
}
加了同步锁之后,count自增的操作变成了原子性操作,所以最终的输出一定是count=200,代码实现了线程安全。
但是Synchronized
虽然确保了线程的安全,但是在性能上却不是最优的,Synchronized
关键字会让没有得到锁资源的线程进入BLOCKED
状态,而后在争夺到锁资源后恢复为RUNNABLE
状态,这个过程中涉及到操作系统用户模式和内核模式的转换,代价比较高。
尽管Java1.6为Synchronized
做了优化,增加了从偏向锁到轻量级锁再到重量级锁的过度,但是在最终转变为重量级锁之后,性能仍然较低。
所谓原子操作类,指的是java.util.concurrent.atomic包下,一系列以Atomic开头的包装类。例如AtomicBoolean
,AtomicInteger
,AtomicLong
。它们分别用于Boolean
,Integer
,Long
类型的原子性操作。
private static AtomicInteger count = new AtomicInteger(0);
public static void main(String[] args) {
for (int i = 0; i < 2; i++) {
new Thread(new Runnable() {
@Override
public void run() {
try {
Thread.sleep(10);
} catch (Exception e) {
e.printStackTrace();
}
//每个线程让count自增100次
for (int i = 0; i < 100; i++) {
count.incrementAndGet();
}
}
}).start();
}
try{
Thread.sleep(2000);
}catch (Exception e){
e.printStackTrace();
}
System.out.println(count);
}
使用AtomicInteger之后,最终的输出结果同样可以保证是200。并且在某些情况下,代码的性能会比Synchronized更好。
而Atomic操作的底层实现正是利用的CAS机制,好的,我们切入到这个博客的正点。
什么是CAS机制
CAS是英文单词Compare And Swap的缩写,翻译过来就是比较并替换。
CAS机制当中使用了3个基本操作数:内存地址V,旧的预期值A,要修改的新值B。
更新一个变量的时候,只有当变量的预期值A和内存地址V当中的实际值相同时,才会将内存地址V对应的值修改为B。
CAS是英文单词Compare And Swap的缩写,翻译过来就是比较并替换。
CAS机制当中使用了3个基本操作数:内存地址V,旧的预期值A,要修改的新值B。
更新一个变量的时候,只有当变量的预期值A和内存地址V当中的实际值相同时,才会将内存地址V对应的值修改为B。
这样说或许有些抽象,我们来看一个例子:
1.在内存地址V当中,存储着值为10的变量。
image
2.此时线程1想要把变量的值增加1。对线程1来说,旧的预期值A=10,要修改的新值B=11。
image
3.在线程1要提交更新之前,另一个线程2抢先一步,把内存地址V中的变量值率先更新成了11。
image
4.线程1开始提交更新,首先进行A和地址V的实际值比较(Compare),发现A不等于V的实际值,提交失败。
4.jpg
5.线程1重新获取内存地址V的当前值,并重新计算想要修改的新值。此时对线程1来说,A=11,B=12。这个重新尝试的过程被称为自旋。
image
6.这一次比较幸运,没有其他线程改变地址V的值。线程1进行Compare,发现A和地址V的实际值是相等的。
image
7.线程1进行SWAP,把地址V的值替换为B,也就是12。
image
从思想上来说,Synchronized属于悲观锁,悲观地认为程序中的并发情况严重,所以严防死守。CAS属于乐观锁,乐观地认为程序中的并发情况不那么严重,所以让线程不断去尝试更新。
总结一下 JAVA 的 cas 是怎么实现的:
- java 的 cas 利用的的是 unsafe 这个类提供的 cas 操作。
- unsafe 的cas 依赖了的是 jvm 针对不同的操作系统实现的 Atomic::cmpxchg
- Atomic::cmpxchg 的实现使用了汇编的 cas 操作,并使用 cpu 硬件提供的 lock信号保证其原子性.
看到上面的解释是不是索然无味,查找了很多资料也没完全弄明白,通过几次验证后,终于明白,最终可以理解成一个无阻塞多线程争抢资源的模型。先上代码
import java.util.concurrent.atomic.AtomicBoolean;
/**
* @author hrabbit
* 2018/07/16.
*/
public class AtomicBooleanTest implements Runnable {
private static AtomicBoolean flag = new AtomicBoolean(true);
public static void main(String[] args) {
AtomicBooleanTest ast = new AtomicBooleanTest();
Thread thread1 = new Thread(ast);
Thread thread = new Thread(ast);
thread1.start();
thread.start();
}
@Override
public void run() {
System.out.println("thread:"+Thread.currentThread().getName()+";flag:"+flag.get());
if (flag.compareAndSet(true,false)){
System.out.println(Thread.currentThread().getName()+""+flag.get());
try {
Thread.sleep(5000);
} catch (InterruptedException e) {
e.printStackTrace();
}
flag.set(true);
}else{
System.out.println("重试机制thread:"+Thread.currentThread().getName()+";flag:"+flag.get());
try {
Thread.sleep(500);
} catch (InterruptedException e) {
e.printStackTrace();
}
run();
}
}
}
这里无论怎么运行,Thread-1、Thread-0都会执行if=true条件,而且还不会产生线程脏读脏写,这是如何做到的了,这就用到了我们的compareAndSet(boolean expect,boolean update)方法
我们看到当Thread-1在进行操作的时候,Thread一直在进行重试机制,程序原理图:
image
这个图中重最要的是compareAndSet(true,false)方法要拆开成compare(true)方法和Set(false)方法理解,是compare(true)是等于true后,就马上设置共享内存为false,这个时候,其它线程无论怎么走都无法走到只有得到共享内存为true时的程序隔离方法区。
看到这里,这种CAS机制就是完美的吗?这个程序其实存在一个问题,不知道大家注意到没有?
但是这种得不到状态为true时使用递归算法是很耗cpu资源的,所以一般情况下,都会有线程sleep。
CAS的缺点:
1.CPU开销较大
在并发量比较高的情况下,如果许多线程反复尝试更新某一个变量,却又一直更新不成功,循环往复,会给CPU带来很大的压力。
2.不能保证代码块的原子性
CAS机制所保证的只是一个变量的原子性操作,而不能保证整个代码块的原子性。比如需要保证3个变量共同进行原子性的更新,就不得不使用Synchronized了。
ABA 问题回顾
CAS 由三个步骤组成,分别是“读取->比较->写回”。考虑这样一种情况,线程1和线程2同时执行 CAS 逻辑,两个线程的执行顺序如下:
时刻1:线程1执行读取操作,获取原值 A,然后线程被切换走
时刻2:线程2执行完成 CAS 操作将原值由 A 修改为 B
时刻3:线程2再次执行 CAS 操作,并将原值由 B 修改为 A
时刻4:线程1恢复运行,将比较值(compareValue)与原值(oldValue)进行比较,发现两个值相等。
然后用新值(newValue)写入内存中,完成 CAS 操作
如上流程,线程1并不知道原值已经被修改过了,在它看来并没什么变化,所以它会继续往下执行流程。对于 ABA 问题,通常的处理措施是对每一次 CAS 操作设置版本号。java.util.concurrent.atomic 包下提供了一个可处理 ABA 问题的原子类 AtomicStampedReference,具体的实现这里就不分析了,有兴趣的朋友可以自己去看看。
ABA问题的解决办法
1.在变量前面追加版本号:每次变量更新就把版本号加1,则A-B-A就变成1A-2B-3A。
2.atomic包下的AtomicStampedReference类:其compareAndSet方法首先检查当前引用是否等于预期引用,并且当前标志是否等于预期标志,如果全部相等,则以原子方式将该引用的该标志的值设置为给定的更新值。
其他问题
CAS除了ABA问题,仍然存在循环时间长开销大和只能保证一个共享变量的原子操作
1. 循环时间长开销大
自旋CAS如果长时间不成功,会给CPU带来非常大的执行开销。如果JVM能支持处理器提供的pause指令那么效率会有一定的提升,pause指令有两个作用,第一它可以延迟流水线执行指令(de-pipeline),使CPU不会消耗过多的执行资源,延迟的时间取决于具体实现的版本,在一些处理器上延迟时间是零。第二它可以避免在退出循环的时候因内存顺序冲突(memory order violation)而引起CPU流水线被清空(CPU pipeline flush),从而提高CPU的执行效率。
2. 只能保证一个共享变量的原子操作
当对一个共享变量执行操作时,我们可以使用循环CAS的方式来保证原子操作,但是对多个共享变量操作时,循环CAS就无法保证操作的原子性,这个时候就可以用锁,或者有一个取巧的办法,就是把多个共享变量合并成一个共享变量来操作。比如有两个共享变量i=2,j=a,合并一下ij=2a,然后用CAS来操作ij。从Java1.5开始JDK提供了AtomicReference类来保证引用对象之间的原子性,你可以把多个变量放在一个对象里来进行CAS操作。
CAS 的应用
1.Java的concurrent包下就有很多类似的实现类,如Atomic开头那些。
2.自旋锁
3.令牌桶限流器
令牌桶限流器
就是系统以恒定的速度向桶内增加令牌。每次请求前从令牌桶里面获取令牌。如果获取到令牌就才可以进行访问。当令牌桶内没有令牌的时候,拒绝提供服务。我们来看看 eureka 的限流器是如何使用 CAS 来维护多线程环境下对 token 的增加和分发的。
就简单介绍到这里吧、、、