概述
对于 RecyclerView 是那么熟悉又那么陌生。熟悉是因为作为一名 Android 开发者,RecyclerView 是经常会在项目里面用到的,陌生是因为只是知道怎么用,但是却不知道 RecyclerView 的内部实现机制。
但凡是一位有所追求的开发者,都不会只让自己停留在只会使用上,而是会研读相关源码,知其然知其所以然。
对于 RecyclerView 的源码解析一篇文章肯定是不够的,后续有时间会继续更新。每一篇都会有自己的主题。RecyclerView 的使用,本文也就不讲了,具体可以查看之前的文章:RecyclerView 使用指南。
对于用过 RecyclerView 的开发者来说,这个 View 的功能确实强大,可以在日常开发的很多场景都可以使用。在讲解 RecyclerView 绘制源码的时候,我希望大家去思考一些问题:
-
如果是你,你会怎么来设计 RecyclerView 的绘制过程,和普通的 View 一样?
-
RecyclerView 可以支持不同的流式布局,一列,多列,所以里面的绘制逻辑它是如何设计的?
-
分割线是可以定制的,那我要如何设计这块的代码?
其实也还有其他的问题,但是本文只讲绘制流程,因此,其他问题就在其他模块去思考。要是在以前呢,我也是为了分析源码而分析源码,然后把文章发出去。很少去思考源码背后的一些东西。直到最近自己需要去重构一个模块的时候,发现设计一个技术方案是多么的难。
本文源码版本:androidx.recyclerView:1.1.0
measure 测量
对于 view 来说,必有的三大流程:测量,布局,绘制。因此 RecyclerView 也是一样。如果你现在还是对 View 的绘制流程,不了解可以推荐看文章:
-
Android View 的绘制流程之 Measure 过程详解 (一)
-
Android View 的绘制流程之 Layout 和 Draw 过程详解 (二)
下面进入正题,首先来看下 RecyclerView 类的定义:
public class RecyclerView extends ViewGroup implements ScrollingView, NestedScrollingChild2, NestedScrollingChild3 { // ...... }
可以看到 RecyclerView 是一个 ViewGroup,也就是说,RecyclerView 本质是一个自定义 view,需要自己去管理绘制流程。对于了解自定义 View 来说,其实就是需要重写 onMeasure 方法。
在 Android 自定义 View 详解 一文中总结了 onMeausre 的具体逻辑,到这里,依然可以做个参考:
-
super.onMeasure 会先计算自定义 view 的大小;
- 调用 measureChild 对子 View 进行测量;
-
自定义 view 设置的宽高参数不是 MeasureSpec.EXACTLY 的话,对于子 View 是 match_parent 需要额外处理,同时也需要对 MeasureSpec.AT_MOST 情况进行额外处理。
-
当自定义View 的大小确定后,在对子 View 是 match_parent 重新测量;
下面来看下 RecyclerView 的 onMeausre 代码:
protected void onMeasure(int widthSpec, int heightSpec) { if (mLayout == null) { // 第一种情况 } if (mLayout.isAutoMeasureEnabled()) { // 第二种情况 } else { // 第三种情况 } }
onMeasure
方法还是有点长,这里我将它分为3种情况,我将简单解释这三种情况:
-
mLayout
即LayoutManager
的对象。我们知道,当RecyclerView
的LayoutManager
为空时,RecyclerView
不能显示任何的数据,在这里我们找到答案。 -
LayoutManager
开启了自动测量时,这是一种情况。在这种情况下,有可能会测量两次。 -
第三种情况就是没有开启自动测量的情况,这种情况比较少,因为
RecyclerView 为了
支持warp_content
属性,系统提供的LayoutManager
都开启自动测量的,不过还是要分析的。
首先我们来第一种情况。
1、LayoutManager == null
这种情况下比较简单,我们来看看源码:
if (mLayout == null) { defaultOnMeasure(widthSpec, heightSpec); return; }
这里是调用了 defaultOnMeasure 方法,
void defaultOnMeasure(int widthSpec, int heightSpec) { // calling LayoutManager here is not pretty but that API is already public and it is better // than creating another method since this is internal. final int width = LayoutManager.chooseSize(widthSpec, getPaddingLeft() + getPaddingRight(), ViewCompat.getMinimumWidth(this)); final int height = LayoutManager.chooseSize(heightSpec, getPaddingTop() + getPaddingBottom(), ViewCompat.getMinimumHeight(this)); setMeasuredDimension(width, height); }
在 defaultOnMeasure
方法里面,主要是通过 LayoutManager
的 chooseSize
方法来计算宽高,最后调用 setMeasuredDimension
方法来设置宽高。下面来看下 chooseSize 的具体逻辑:
public static int chooseSize(int spec, int desired, int min) { final int mode = View.MeasureSpec.getMode(spec); final int size = View.MeasureSpec.getSize(spec); switch (mode) { case View.MeasureSpec.EXACTLY: return size; case View.MeasureSpec.AT_MOST: return Math.min(size, Math.max(desired, min)); case View.MeasureSpec.UNSPECIFIED: default: return Math.max(desired, min); } }
这里主要是根据不同的设置,来返回最终的大小。这块逻辑不是很懂的读者可以阅读前面提到的文章,里面详细解读了。但是这里有个问题需要指出来的就是没有测量子 view 的大小,这也是白屏的原因。因为 RecyclerView 的绘制其实是委托给 LayoutManager 来管理呢,LayoutManager = null 的情况下测量子 view 没有任何的意义。
2、LayoutManager 开启了自动测量
在分析这种情况之前,我们先对了解几个东西。
RecyclerView
的测量分为两步,分别调用 dispatchLayoutStep1
和 dispatchLayoutStep2
。同时,了解过 RecyclerView
源码的同学应该知道在 RecyclerView
的源码里面还一个dispatchLayoutStep3
方法。这三个方法的方法名比较接近,所以容易让人搞混淆。本文会详细的讲解这三个方法的作用。
由于在这种情况下,只会调用 dispatchLayoutStep1
和 dispatchLayoutStep2
这两个方法,所以这里会重点的讲解这两个方法。而 dispatchLayoutStep3
方法的调用在RecyclerView
的 onLayout
方法里面,所以在后面分析 onLayout
方法时再来看 dispatchLayoutStep3
方法。
我们在分析之前,先来看一个东西 —— mState.mLayoutStep
。这个变量有几个取值情况。我们分别来看看:
取值 | 含义 |
---|---|
State.STEP_START |
|
State.STEP_LAYOUT |
当 |
State.STEP_ANIMATIONS |
当 |
从上表中,我们了解到 mState.mLayoutStep
的三个状态对应着不同的 dispatchLayoutStep
方法。这一点,我们必须清楚,否则接下来的代码将难以理解。
if (mLayout.isAutoMeasureEnabled()) { final int widthMode = MeasureSpec.getMode(widthSpec); final int heightMode = MeasureSpec.getMode(heightSpec); /** * This specific call should be considered deprecated and replaced with * {@link #defaultOnMeasure(int, int)}. It can't actually be replaced as it could * break existing third party code but all documentation directs developers to not * override {@link LayoutManager#onMeasure(int, int)} when * {@link LayoutManager#isAutoMeasureEnabled()} returns true. */ mLayout.onMeasure(mRecycler, mState, widthSpec, heightSpec); final boolean measureSpecModeIsExactly = widthMode == MeasureSpec.EXACTLY && heightMode == MeasureSpec.EXACTLY; if (measureSpecModeIsExactly || mAdapter == null) { return; } // 开始测量 if (mState.mLayoutStep == State.STEP_START) { dispatchLayoutStep1(); } // set dimensions in 2nd step. Pre-layout should happen with old dimensions for // consistency mLayout.setMeasureSpecs(widthSpec, heightSpec); mState.mIsMeasuring = true;
// 第二次 dispatchLayoutStep2(); // now we can get the width and height from the children. mLayout.setMeasuredDimensionFromChildren(widthSpec, heightSpec); // if RecyclerView has non-exact width and height and if there is at least one child // which also has non-exact width & height, we have to re-measure. if (mLayout.shouldMeasureTwice()) { mLayout.setMeasureSpecs( MeasureSpec.makeMeasureSpec(getMeasuredWidth(), MeasureSpec.EXACTLY), MeasureSpec.makeMeasureSpec(getMeasuredHeight(), MeasureSpec.EXACTLY)); mState.mIsMeasuring = true; dispatchLayoutStep2(); // now we can get the width and height from the children. mLayout.setMeasuredDimensionFromChildren(widthSpec, heightSpec); } }
首先,我们来看看 onMeasure
方法。
public void onMeasure(@NonNull Recycler recycler, @NonNull State state, int widthSpec, int heightSpec) { mRecyclerView.defaultOnMeasure(widthSpec, heightSpec); }
发现调用的
RecyclerView
的
defaultOnMeasure
方法,其实就是前面我们介绍过的自定义 View 的三个步骤:先是测量自己本身的大小。
dispatchLayoutStep1
咱们再接着往下走,看看 dispatchLayoutStep1() 方法的具体逻辑:
/** * The first step of a layout where we; * - process adapter updates * - decide which animation should run * - save information about current views * - If necessary, run predictive layout and save its information */ private void dispatchLayoutStep1() {
// 这里还用到了断言 mState.assertLayoutStep(State.STEP_START); fillRemainingScrollValues(mState); mState.mIsMeasuring = false; startInterceptRequestLayout(); mViewInfoStore.clear(); onEnterLayoutOrScroll();
// 处理 adapter 更新 processAdapterUpdatesAndSetAnimationFlags(); saveFocusInfo(); mState.mTrackOldChangeHolders = mState.mRunSimpleAnimations && mItemsChanged; mItemsAddedOrRemoved = mItemsChanged = false; mState.mInPreLayout = mState.mRunPredictiveAnimations; mState.mItemCount = mAdapter.getItemCount(); findMinMaxChildLayoutPositions(mMinMaxLayoutPositions); // 是否要运行动画 if (mState.mRunSimpleAnimations) { // Step 0: Find out where all non-removed items are, pre-layout int count = mChildHelper.getChildCount(); for (int i = 0; i < count; ++i) { final ViewHolder holder = getChildViewHolderInt(mChildHelper.getChildAt(i)); if (holder.shouldIgnore() || (holder.isInvalid() && !mAdapter.hasStableIds())) { continue; } final ItemHolderInfo animationInfo = mItemAnimator .recordPreLayoutInformation(mState, holder, ItemAnimator.buildAdapterChangeFlagsForAnimations(holder), holder.getUnmodifiedPayloads()); mViewInfoStore.addToPreLayout(holder, animationInfo); if (mState.mTrackOldChangeHolders && holder.isUpdated() && !holder.isRemoved() && !holder.shouldIgnore() && !holder.isInvalid()) { long key = getChangedHolderKey(holder); // This is NOT the only place where a ViewHolder is added to old change holders // list. There is another case where: // * A VH is currently hidden but not deleted // * The hidden item is changed in the adapter // * Layout manager decides to layout the item in the pre-Layout pass (step1) // When this case is detected, RV will un-hide that view and add to the old // change holders list. mViewInfoStore.addToOldChangeHolders(key, holder); } } } if (mState.mRunPredictiveAnimations) { // Step 1: run prelayout: This will use the old positions of items. The layout manager // is expected to layout everything, even removed items (though not to add removed // items back to the container). This gives the pre-layout position of APPEARING views // which come into existence as part of the real layout. // Save old positions so that LayoutManager can run its mapping logic. saveOldPositions(); final boolean didStructureChange = mState.mStructureChanged; mState.mStructureChanged = false; // temporarily disable flag because we are asking for previous layout mLayout.onLayoutChildren(mRecycler, mState); mState.mStructureChanged = didStructureChange; for (int i = 0; i < mChildHelper.getChildCount(); ++i) { final View child = mChildHelper.getChildAt(i); final ViewHolder viewHolder = getChildViewHolderInt(child); if (viewHolder.shouldIgnore()) { continue; } if (!mViewInfoStore.isInPreLayout(viewHolder)) { int flags = ItemAnimator.buildAdapterChangeFlagsForAnimations(viewHolder); boolean wasHidden = viewHolder .hasAnyOfTheFlags(ViewHolder.FLAG_BOUNCED_FROM_HIDDEN_LIST); if (!wasHidden) { flags |= ItemAnimator.FLAG_APPEARED_IN_PRE_LAYOUT; } final ItemHolderInfo animationInfo = mItemAnimator.recordPreLayoutInformation( mState, viewHolder, flags, viewHolder.getUnmodifiedPayloads()); if (wasHidden) { recordAnimationInfoIfBouncedHiddenView(viewHolder, animationInfo); } else { mViewInfoStore.addToAppearedInPreLayoutHolders(viewHolder, animationInfo); } } } // we don't process disappearing list because they may re-appear in post layout pass. clearOldPositions(); } else { clearOldPositions(); } onExitLayoutOrScroll(); stopInterceptRequestLayout(false);
// 上面的执行完以后,改变状态 mState.mLayoutStep = State.STEP_LAYOUT; }
其实最上面的方法注释,已经把这个方法所做的事情都总结好了,该方法主要工作如下:
-
处理
Adapter
更新; -
决定执行哪一种动画
-
保存每个
ItemView
的信息 -
有必要的话,会进行预布局,并把相关信息保存下来。
可以看到整个方法内部调用的方法还是很多,导致你会觉得这个方法的逻辑很复杂。不过既然是源码阅读,咱们只关注一些重要的点,在众多被调用的方法中 processAdapterUpdatesAndSetAnimationFlags 是需要点进去看看里面的逻辑的,后续的 if else 逻辑其实都是在该方法里面决定的。
/** * Consumes adapter updates and calculates which type of animations we want to run. * Called in onMeasure and dispatchLayout. * <p> * This method may process only the pre-layout state of updates or all of them. */ private void processAdapterUpdatesAndSetAnimationFlags() { if (mDataSetHasChangedAfterLayout) { // Processing these items have no value since data set changed unexpectedly. // Instead, we just reset it. mAdapterHelper.reset(); if (mDispatchItemsChangedEvent) { mLayout.onItemsChanged(this); } } // simple animations are a subset of advanced animations (which will cause a // pre-layout step) // If layout supports predictive animations, pre-process to decide if we want to run them if (predictiveItemAnimationsEnabled()) { mAdapterHelper.preProcess(); } else { mAdapterHelper.consumeUpdatesInOnePass(); } boolean animationTypeSupported = mItemsAddedOrRemoved || mItemsChanged; mState.mRunSimpleAnimations = mFirstLayoutComplete && mItemAnimator != null && (mDataSetHasChangedAfterLayout || animationTypeSupported || mLayout.mRequestedSimpleAnimations) && (!mDataSetHasChangedAfterLayout || mAdapter.hasStableIds()); mState.mRunPredictiveAnimations = mState.mRunSimpleAnimations && animationTypeSupported && !mDataSetHasChangedAfterLayout && predictiveItemAnimationsEnabled(); }
这里我们的重心放在
mFirstLayoutComplete
变量里面,我们发现
mRunSimpleAnimations
的值与
mFirstLayoutComplete
有关,
mRunPredictiveAnimations
同时跟
mRunSimpleAnimations
有关。所以这里我们可以得出一个结论,当
RecyclerView
第一次加载数据时,是不会执行的动画?那到底会不会呢,这里先卖个关子。
dispatchLayoutStep2
接下来我们看看
dispatchLayoutStep2
方法,这个方法是真正布局
children
。上代码:
/** * The second layout step where we do the actual layout of the views for the final state. * This step might be run multiple times if necessary (e.g. measure). */ private void dispatchLayoutStep2() { startInterceptRequestLayout(); onEnterLayoutOrScroll(); mState.assertLayoutStep(State.STEP_LAYOUT | State.STEP_ANIMATIONS); mAdapterHelper.consumeUpdatesInOnePass(); mState.mItemCount = mAdapter.getItemCount(); mState.mDeletedInvisibleItemCountSincePreviousLayout = 0; // Step 2: Run layout mState.mInPreLayout = false; mLayout.onLayoutChildren(mRecycler, mState); mState.mStructureChanged = false; mPendingSavedState = null; // onLayoutChildren may have caused client code to disable item animations; re-check mState.mRunSimpleAnimations = mState.mRunSimpleAnimations && mItemAnimator != null; mState.mLayoutStep = State.STEP_ANIMATIONS; onExitLayoutOrScroll(); stopInterceptRequestLayout(false); }
可以看到的是,这里的逻辑似乎简单很多,那是因为这里把对子 view 的绘制逻辑放到 LayoutManager 中去了。到这里,state 的状态已经改变了,变成了 State.STEP_LAYOUT | State.STEP_ANIMATIONS。
系统的 LayoutManager
的 onLayoutChildren
方法是一个空方法,所以需要 LayoutManager
的子类自己来实现。
这里先不做过多介绍,不同的 LayoutManager 有不同的实现。
3、没有开启自动测量
还是先来看看这一块的代码:
{ if (mHasFixedSize) { mLayout.onMeasure(mRecycler, mState, widthSpec, heightSpec); return; } // custom onMeasure if (mAdapterUpdateDuringMeasure) { startInterceptRequestLayout(); onEnterLayoutOrScroll(); processAdapterUpdatesAndSetAnimationFlags(); onExitLayoutOrScroll(); if (mState.mRunPredictiveAnimations) { mState.mInPreLayout = true; } else { // consume remaining updates to provide a consistent state with the layout pass. mAdapterHelper.consumeUpdatesInOnePass(); mState.mInPreLayout = false; } mAdapterUpdateDuringMeasure = false; stopInterceptRequestLayout(false); } else if (mState.mRunPredictiveAnimations) { // If mAdapterUpdateDuringMeasure is false and mRunPredictiveAnimations is true: // this means there is already an onMeasure() call performed to handle the pending // adapter change, two onMeasure() calls can happen if RV is a child of LinearLayout // with layout_width=MATCH_PARENT. RV cannot call LM.onMeasure() second time // because getViewForPosition() will crash when LM uses a child to measure. setMeasuredDimension(getMeasuredWidth(), getMeasuredHeight()); return; } if (mAdapter != null) { mState.mItemCount = mAdapter.getItemCount(); } else { mState.mItemCount = 0; } startInterceptRequestLayout(); mLayout.onMeasure(mRecycler, mState, widthSpec, heightSpec); stopInterceptRequestLayout(false); mState.mInPreLayout = false; // clear }
这里主要做了两件事,其实跟第二个步骤很像,最终都会调用 LayoutManager
的 onMeasure
方法来进行测量。
-
如果
mHasFixedSize
为true(也就是调用了setHasFixedSize
方法),将直接调用LayoutManager
的onMeasure
方法进行测量。 -
如果
mHasFixedSize
为false,同时此时如果有数据更新,先处理数据更新的事务,然后调用LayoutManager
的onMeasure
方法进行测量
onLayout 布局
到这里,关于测量的逻辑就讲完了,接下去开始看 layout 逻辑:
@Override protected void onLayout(boolean changed, int l, int t, int r, int b) { TraceCompat.beginSection(TRACE_ON_LAYOUT_TAG); dispatchLayout(); TraceCompat.endSection(); mFirstLayoutComplete = true; }
首先会调用 dispatchLayout 进行 layout 操作,可以看到前面关注过的一个变量 mFirstLayoutComplete 赋值变为 true 。
下面主要看 dispatchLayout 方法:
void dispatchLayout() { if (mAdapter == null) { Log.e(TAG, "No adapter attached; skipping layout"); // leave the state in START return; } if (mLayout == null) { Log.e(TAG, "No layout manager attached; skipping layout"); // leave the state in START return; } mState.mIsMeasuring = false; if (mState.mLayoutStep == State.STEP_START) { dispatchLayoutStep1(); mLayout.setExactMeasureSpecsFrom(this); dispatchLayoutStep2(); } else if (mAdapterHelper.hasUpdates() || mLayout.getWidth() != getWidth() || mLayout.getHeight() != getHeight()) { // First 2 steps are done in onMeasure but looks like we have to run again due to // changed size. mLayout.setExactMeasureSpecsFrom(this); dispatchLayoutStep2(); } else { // always make sure we sync them (to ensure mode is exact) mLayout.setExactMeasureSpecsFrom(this); } dispatchLayoutStep3(); }
dispatchLayout
方法也是非常的简单,这个方法保证 RecyclerView
必须经历三个过程 —— dispatchLayoutStep1
、dispatchLayoutStep2
、dispatchLayoutStep3
。同时,如果在这时候,发现子 view 宽高参数发生变化后,会再次调用 dispatchLayoutStep2() 方法。
最后,来看下千呼万唤使出来的 dispatchLayoutStep3 方法:
/** * The final step of the layout where we save the information about views for animations, * trigger animations and do any necessary cleanup. */ private void dispatchLayoutStep3() {
// 动画 mState.assertLayoutStep(State.STEP_ANIMATIONS); startInterceptRequestLayout(); onEnterLayoutOrScroll();
// 标记进行复位 mState.mLayoutStep = State.STEP_START; if (mState.mRunSimpleAnimations) { // Step 3: Find out where things are now, and process change animations. // traverse list in reverse because we may call animateChange in the loop which may // remove the target view holder. for (int i = mChildHelper.getChildCount() - 1; i >= 0; i--) { ViewHolder holder = getChildViewHolderInt(mChildHelper.getChildAt(i)); if (holder.shouldIgnore()) { continue; } long key = getChangedHolderKey(holder); final ItemHolderInfo animationInfo = mItemAnimator .recordPostLayoutInformation(mState, holder); ViewHolder oldChangeViewHolder = mViewInfoStore.getFromOldChangeHolders(key); if (oldChangeViewHolder != null && !oldChangeViewHolder.shouldIgnore()) { // run a change animation // If an Item is CHANGED but the updated version is disappearing, it creates // a conflicting case. // Since a view that is marked as disappearing is likely to be going out of // bounds, we run a change animation. Both views will be cleaned automatically // once their animations finish. // On the other hand, if it is the same view holder instance, we run a // disappearing animation instead because we are not going to rebind the updated // VH unless it is enforced by the layout manager. final boolean oldDisappearing = mViewInfoStore.isDisappearing( oldChangeViewHolder); final boolean newDisappearing = mViewInfoStore.isDisappearing(holder); if (oldDisappearing && oldChangeViewHolder == holder) { // run disappear animation instead of change mViewInfoStore.addToPostLayout(holder, animationInfo); } else { final ItemHolderInfo preInfo = mViewInfoStore.popFromPreLayout( oldChangeViewHolder); // we add and remove so that any post info is merged. mViewInfoStore.addToPostLayout(holder, animationInfo); ItemHolderInfo postInfo = mViewInfoStore.popFromPostLayout(holder); if (preInfo == null) { handleMissingPreInfoForChangeError(key, holder, oldChangeViewHolder); } else { animateChange(oldChangeViewHolder, holder, preInfo, postInfo, oldDisappearing, newDisappearing); } } } else { mViewInfoStore.addToPostLayout(holder, animationInfo); } } // Step 4: Process view info lists and trigger animations 做动画 mViewInfoStore.process(mViewInfoProcessCallback); } mLayout.removeAndRecycleScrapInt(mRecycler);
// 记录数据,并把之前用到一些标志位复位 mState.mPreviousLayoutItemCount = mState.mItemCount; mDataSetHasChangedAfterLayout = false; mDispatchItemsChangedEvent = false; mState.mRunSimpleAnimations = false; mState.mRunPredictiveAnimations = false; mLayout.mRequestedSimpleAnimations = false; if (mRecycler.mChangedScrap != null) { mRecycler.mChangedScrap.clear(); } if (mLayout.mPrefetchMaxObservedInInitialPrefetch) { // Initial prefetch has expanded cache, so reset until next prefetch. // This prevents initial prefetches from expanding the cache permanently. mLayout.mPrefetchMaxCountObserved = 0; mLayout.mPrefetchMaxObservedInInitialPrefetch = false; mRecycler.updateViewCacheSize(); } mLayout.onLayoutCompleted(mState); onExitLayoutOrScroll(); stopInterceptRequestLayout(false); mViewInfoStore.clear();
// if (didChildRangeChange(mMinMaxLayoutPositions[0], mMinMaxLayoutPositions[1])) { dispatchOnScrolled(0, 0); } recoverFocusFromState(); resetFocusInfo(); }
从上面的逻辑可以看出 dispatchLayoutStep3
主要是做 Item 的动画,本文不对动画进行展开,所以先省略动画部分。然后就是对一些标志位复位。清除一些状态。
小结
这里对这三个方法做一个小结,方便大家记住这几个方法的作用:
方法名 | 作用 |
---|---|
dispatchLayoutStep1 |
本方法的作用主要有三点:
|
dispatchLayoutStep2 | 在这个方法里面,真正进行 children 的测量和布局。 |
dispatchLayoutStep3 | 这个方法的作用执行在 dispatchLayoutStep1 方法里面保存的动画信息。本方法不是本文的介绍重点 |
3、Draw 绘制
接下来,我们来分析三大流程的最后一个阶段 —— draw。
下面来看看 RecyclerView 的 draw() 和 onDraw() 方法:
public void draw(Canvas c) { super.draw(c); final int count = mItemDecorations.size(); for (int i = 0; i < count; i++) { mItemDecorations.get(i).onDrawOver(c, this, mState); } // ...... }
真是考虑周到啊。
@Override public void onDraw(Canvas c) { super.onDraw(c); final int count = mItemDecorations.size(); for (int i = 0; i < count; i++) { mItemDecorations.get(i).onDraw(c, this, mState); } }
发现这里并没有做太多,只是调用 ItemDecoration
的 onDraw 和
onDrawOver 方法。这样就将分割线添加到其中。
4、 LinearLayoutManager
前面在介绍
dispatchLayoutStep2
方法时,只是简单的介绍了,
RecyclerView
通过调用
LayoutManager
的
onLayoutChildren
方法。
LayoutManager
本身对这个方法没有进行实现,所以必须得看看它的子类,这里以 LinearLayoutManager 来举例说明:
onLayoutChildren
@Override public void onLayoutChildren(RecyclerView.Recycler recycler, RecyclerView.State state) { // ...... ensureLayoutState(); mLayoutState.mRecycle = false; // resolve layout direction resolveShouldLayoutReverse();
// ......
// calculate anchor position and coordinate
updateAnchorInfoForLayout(recycler, state, mAnchorInfo);
mAnchorInfo.mValid = true;
// ...
detachAndScrapAttachedViews(recycler); // 这个方法会在缓存那一篇文章进行讲解。
// ...
// noRecycleSpace not needed: recycling doesn't happen in below's fill // invocations because mScrollingOffset is set to SCROLLING_OFFSET_NaN mLayoutState.mNoRecycleSpace = 0; if (mAnchorInfo.mLayoutFromEnd) { // fill towards start updateLayoutStateToFillStart(mAnchorInfo); mLayoutState.mExtraFillSpace = extraForStart; fill(recycler, mLayoutState, state, false); startOffset = mLayoutState.mOffset; final int firstElement = mLayoutState.mCurrentPosition; if (mLayoutState.mAvailable > 0) { extraForEnd += mLayoutState.mAvailable; } // fill towards end updateLayoutStateToFillEnd(mAnchorInfo); mLayoutState.mExtraFillSpace = extraForEnd; mLayoutState.mCurrentPosition += mLayoutState.mItemDirection; fill(recycler, mLayoutState, state, false); endOffset = mLayoutState.mOffset; if (mLayoutState.mAvailable > 0) { // end could not consume all. add more items towards start extraForStart = mLayoutState.mAvailable; updateLayoutStateToFillStart(firstElement, startOffset); mLayoutState.mExtraFillSpace = extraForStart; fill(recycler, mLayoutState, state, false); startOffset = mLayoutState.mOffset; } } else { // fill towards end updateLayoutStateToFillEnd(mAnchorInfo); mLayoutState.mExtraFillSpace = extraForEnd; fill(recycler, mLayoutState, state, false); endOffset = mLayoutState.mOffset; final int lastElement = mLayoutState.mCurrentPosition; if (mLayoutState.mAvailable > 0) { extraForStart += mLayoutState.mAvailable; } // fill towards start updateLayoutStateToFillStart(mAnchorInfo); mLayoutState.mExtraFillSpace = extraForStart; mLayoutState.mCurrentPosition += mLayoutState.mItemDirection; fill(recycler, mLayoutState, state, false); startOffset = mLayoutState.mOffset; if (mLayoutState.mAvailable > 0) { extraForEnd = mLayoutState.mAvailable; // start could not consume all it should. add more items towards end updateLayoutStateToFillEnd(lastElement, endOffset); mLayoutState.mExtraFillSpace = extraForEnd; fill(recycler, mLayoutState, state, false); endOffset = mLayoutState.mOffset; } } layoutForPredictiveAnimations(recycler, state, startOffset, endOffset); if (!state.isPreLayout()) { mOrientationHelper.onLayoutComplete(); } else { mAnchorInfo.reset(); } mLastStackFromEnd = mStackFromEnd; if (DEBUG) { validateChildOrder(); } }
onLayoutChildren 方法很长,因此省略一些无关的代码。其实主要是做两件事确定锚点的信息,这里面的信息包括:
-
Children
的布局方向,有 start 和 end 两个方向; -
mPosition
和mCoordinate
,分别表示Children
开始填充的 position 和坐标。
根据锚点信息,调用 fill
方法进行 Children
的填充。这个过程中根据锚点信息的不同,可能会调用两次 fill
方法。
updateAnchorInfoForLayout
要想看锚点信息的计算过程,我们可以从 updateAnchorInfoForLayout
方法里面来找出答案,我们来看看 updateAnchorInfoForLayout
方法:
private void updateAnchorInfoForLayout(RecyclerView.Recycler recycler, RecyclerView.State state, AnchorInfo anchorInfo) { if (updateAnchorFromPendingData(state, anchorInfo)) { if (DEBUG) { Log.d(TAG, "updated anchor info from pending information"); } return; } if (updateAnchorFromChildren(recycler, state, anchorInfo)) { if (DEBUG) { Log.d(TAG, "updated anchor info from existing children"); } return; } if (DEBUG) { Log.d(TAG, "deciding anchor info for fresh state"); } anchorInfo.assignCoordinateFromPadding(); anchorInfo.mPosition = mStackFromEnd ? state.getItemCount() - 1 : 0; }
我相信通过上面的代码注释,大家都能明白 updateAnchorInfoForLayout
方法到底干了嘛,这里我简单分析一下这三种确定所做的含义,具体是怎么做的,这里就不讨论。
-
第一种计算方式,表示含义有两种:1.
RecyclerView
被重建,期间回调了onSaveInstanceState
方法,所以目的是为了恢复上次的布局;2.RecyclerView
调用了scrollToPosition
之类的方法,所以目的是让RecyclerView
滚到准确的位置上去。所以,锚点的信息根据上面的两种情况来计算。 -
第二种计算方法,从
Children
上面来计算锚点信息。这种计算方式也有两种情况:1. 如果当前有拥有焦点的Child
,那么有当前有焦点的 Child 的位置来计算锚点;2. 如果没有 child 拥有焦点,那么根据布局方向(此时布局方向由mLayoutFromEnd
来决定)获取可见的第一个ItemView
或者最后一个ItemView
。 -
如果前面两种方式都计算失败了,那么采用第三种计算方式,也就是默认的计算方式。
fill 填充布局
然后就是调用 fill
方法来填充 Children
。在正式分析填充过程时,我们先来看一张图片:
上图形象的展现出三种 fill
的情况。其中,我们可以看到第三种情况,fill
方法被调用了两次。
我们看看 fill
方法:
int fill(RecyclerView.Recycler recycler, LayoutState layoutState, RecyclerView.State state, boolean stopOnFocusable) { // ······ while ((layoutState.mInfinite || remainingSpace > 0) && layoutState.hasMore(state)) { // ······ layoutChunk(recycler, state, layoutState, layoutChunkResult); } // ······ }
fill
方法的代码比较长,所以省略了很多无关的代码。首先可以看到有个 while 方法,这个方法其实就是用来不断向 RecyclerView 中添加子 View 的,直到没有空间为止。填充的方式就是根据剩余空间来进行添加,而填充 Child
的地方是 layoutChunk
方法。
layoutChunk
我们来看看 layoutChunk
方法。
void layoutChunk(RecyclerView.Recycler recycler, RecyclerView.State state, LayoutState layoutState, LayoutChunkResult result) { View view = layoutState.next(recycler); ... if (layoutState.mScrapList == null) { if (mShouldReverseLayout == (layoutState.mLayoutDirection == LayoutState.LAYOUT_START)) { addView(view); } else { addView(view, 0); } } // ... measureChildWithMargins(view, 0, 0); // 在子view 添加后,同时对其进行测量 // ... // We calculate everything with View's bounding box (which includes decor and margins) // To calculate correct layout position, we subtract margins. layoutDecorated(view, left + params.leftMargin, top + params.topMargin, right - params.rightMargin, bottom - params.bottomMargin); ... }
提醒下别小看这个 next
方法,RecyclerView
缓存机制的起点就是从这个方法开始,可想而知,这个方法到底为我们做了多少事情。
这里的 addView() 方法,其实就是 ViewGroup 的 addView() 方法;measureChildWithMargins() 方法看名字就知道是用于测量子控件大小的,不了解这个方法的,可以去看我开头给出的关于 View 的绘制文章。目前就简单地理解为测量子控件大小就好了。下面是 layoutDecoreated() 方法:
public void layoutDecorated(@NonNull View child, int left, int top, int right, int bottom) {
// 将分割线考虑进去 final Rect insets = ((LayoutParams) child.getLayoutParams()).mDecorInsets; child.layout(left + insets.left, top + insets.top, right - insets.right, bottom - insets.bottom); }
总结上面代码,在 RecyclerView 的 measure 及 layout 阶段,填充 ItemView 的算法为:向父容器增加子控件,测量子控件大小,布局子控件,布局锚点向当前布局方向平移子控件大小,重复上诉步骤至 RecyclerView 可绘制空间消耗完毕或子控件已全部填充。
这样所有的子控件的 measure 及 layout 过程就完成了。回到 RecyclerView 的 onMeasure 方法,执行 mLayout.setMeasuredDimensionFromChildren(widthSpec, heightSpec) 这行代码的作用就是根据子控件的大小,设置 RecyclerView 的大小。至此,RecyclerView 的 measure 和 layout 实际上已经完成了。
但是,你有可能已经发现上面过程中的问题了:如何确定 RecyclerView 的可绘制空间?不过,如果你熟悉 android 控件的绘制机制的话,这就不是问题。其实,这里的可绘制空间,可以简单地理解为父容器的大小;更准确的描述是,父容器对 RecyclerView 的布局大小的要求,可以通过 MeasureSpec.getSize() 方法获得。
总结
到这里,关于 RecyclerView 的绘制流程就讲完了,由于主打绘制流程,没有分析其他,可能会导致整个逻辑有些跳跃,但不妨碍理解整个绘制过程。
最后回到文章前面的问题上,可以发现 RecyclerView 将绘制过程其实是委托给 layoutManager 来操作,这和普通自定义 view 是很不一样的。这样的灵活操作,可以让使用者自定义各种样式,使得 RecyclerView 使用场景变得更加丰富。
其次在于分割线的处理上,它并不把分割线当做是子 view 来处理,而是在布局子 view 的时候,将分割线考虑进去给留下间隙。