• 欢迎访问开心洋葱网站,在线教程,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站,欢迎加入开心洋葱 QQ群
  • 为方便开心洋葱网用户,开心洋葱官网已经开启复制功能!
  • 欢迎访问开心洋葱网站,手机也能访问哦~欢迎加入开心洋葱多维思维学习平台 QQ群
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏开心洋葱吧~~~~~~~~~~~~~!
  • 由于近期流量激增,小站的ECS没能经的起亲们的访问,本站依然没有盈利,如果各位看如果觉着文字不错,还请看官给小站打个赏~~~~~~~~~~~~~!

贪婪算法,贪婪法之贪心算法

机器学习 开心洋葱 2766次浏览 0个评论

贪心法,又称贪心算法贪婪算法、或称贪婪法,是一种在每一步选择中都采取在当前状态下最好或最优(即最有利)的选择,从而希望导致结果是最好或最优的算法。[1]比如在旅行推销员问题中,如果旅行员每次都选择最近的城市,那这就是一种贪心算法

贪心算法在有最优子结构的问题中尤为有效。最优子结构的意思是局部最优解能决定全局最优解。简单地说,问题能够分解成子问题来解决,子问题的最优解能递推到最终问题的最优解。

贪心算法与动态规划的不同在于它对每个子问题的解决方案都做出选择,不能回退。动态规划则会保存以前的运算结果,并根据以前的结果对当前进行选择,有回退功能。

贪心法可以解决一些最优化问题,如:求图中的最小生成树、求哈夫曼编码……对于其他问题,贪心法一般不能得到我们所要求的答案。一旦一个问题可以通过贪心法来解决,那么贪心法一般是解决这个问题的最好办法。由于贪心法的高效性以及其所求得的答案比较接近最优结果,贪心法也可以用作辅助算法或者直接解决一些要求结果不特别精确的问题。

贪心算法的设计思想

贪心算法在解决问题的策略上目光短浅,只根据当前已有的信息就做出选择,而且一旦做出了选择,不管将来有什么结果,这个选择都不会改变。换言之,贪心法并不是从整体最优考虑,它所做出的选择只是在某种意义上的局部最优。贪心算法对于大部分的优化问题都能产生最优解,但不能总获得整体最优解,通常可以获得近似最优解。
引例 [找零钱]
一个小孩买了价值少于1美元的糖,并将1美元的钱交给售货员。售货员希望用数目最少的硬币找给小孩。假设提供了数目不限的面值为2 5美分、1 0美分、5美分、及1美分的硬币。售货员分步骤组成要找的零钱数,每次加入一个硬币。选择硬币时所采用的贪婪准则如下:每一次选择应使零钱数尽量增大。为保证解法的可行性(即:所给的零钱等于要找的零钱数),所选择的硬币不应使零钱总数超过最终所需的数目
引例分析
为使找回的零钱的硬币数最小,不考虑找零钱的所有各种方案,而是从最大面值的币种开始,按递减的顺序考虑各币种,先尽量用大面值的币种,只当不足大面值币种的金额才会去考虑下一种较小面值的币种。这就是在采用贪婪法。这种方法在这里之所以总是最优,是因为银行对其发行的硬币种类和硬币面值的巧妙安排。如果只有面值分别为1,5和11单位的硬币,而希望找回总额为15单位的硬币,按贪婪算法,应找1个11单位面值的硬币和4个1单位面值的硬币,共找回5个硬币。但最优的解答应是3个5单位面值的硬币。

贪心法的求解过程

用贪心法求解问题应该考虑如下几个方面:
(1)候选集合C:为了构造问题的解决方案,有一个候选集合C作为问题的可能解,即问题的最终解均取自于候选集合C。例如,在付款问题中,各种 面值的货币构成候选集合。
(2)解集合S:随着贪心选择的进行,解集合S不断扩展,直到构成一个满足问题的完整解。例如,在付款问题中,已付出的货币构成解集合。
(3)解决函数solution:检查解集合S是否构成问题的完整解。例如,在付款问题中,解决函数是已付出的货币金额恰好等于应付款。
(4)选择函数select:即贪心策略,这是贪心法的关键,它指出哪个候选对象最有希望构成问题的解,选择函数通常和目标函数有关。例如,在付款 问题中,贪心策略就是在候选集合中选择面值最大的货币。
(5)可行函数feasible:检查解集合中加入一个候选对象是否可行,即解集合扩展后是否满足约束条件。例如,在付款问题中,可行函数是每一步选 择的货币和已付出的货币相加不超过应付款。

贪心法的一般流程

Greedy(C) //C是问题的输入集合即候选集合
{
S={ }; //初始解集合为空集
while (not solution(S)) //集合S没有构成问题的一个解
{
x=select(C); //在候选集合C中做贪心选择
if feasible(S, x) //判断集合S中加入x后的解是否可行
S=S+{x};
C=C-{x};
}
return S;

贪心法的基本要素

对于一个具体的问题,怎么知道是否可用贪心算法解此问题,以及能否得到问题的最优解呢?这个问题很难给予肯定的回答。
但是,从许多可以用贪心算法求解的问题中看到这类问题一般具有2个重要的性质:贪心选择性质和最优子结构性质。
子问题:假设为了解决某一优化问题,需要依次作出n个决策D1,D2,…,Dn,对于任何一个整数k,1 < k < n,以Dk作为问题的初始状态,来进行以后的决策,这样的问题就成为是原问题的一个子问题。
1.贪心选择性质
所谓贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选择,换句话说,当考虑做何种选择的时候,我们只考虑对当前问题最佳的选择而不考虑子问题的结果。这是贪心算法可行的第一个基本要素。
贪心算法以迭代的方式作出相继的贪心选择,每作一次贪心选择就将所求问题简化为规模更小的子问题。
对于一个具体问题,要确定它是否具有贪心选择性质,必须证明每一步所作的贪心选择最终导致问题的整体最优解。
2.最优子结构性质
当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。问题的最优子结构性质是该问题可用贪心算法求解的关键特征。

贪心法的应用

  • 哈夫曼编码
  • 0-1背包问题
  • 磁盘文件的存储
  • 生产调度问题
  • 信息查询

  • 开心洋葱 , 版权所有丨如未注明 , 均为原创丨未经授权请勿修改 , 转载请注明贪婪算法,贪婪法之贪心算法
    喜欢 (1)

    您必须 登录 才能发表评论!

    加载中……